Commit 911f33bc authored by Leigh Smith's avatar Leigh Smith

Corrected variable naming to PEP-8

parent defcbad6
{
"metadata": {
"name": "",
"signature": "sha256:0194aa9777566a17c15433d0bd70d45727431649e26d09e6c3b091ec6018a537"
"signature": "sha256:71d5625f02dc9a007822fd62b88f49f1c98c1cf810f2adee13ab71053bbf59d5"
},
"nbformat": 3,
"nbformat_minor": 0,
......@@ -41,7 +41,7 @@
"import numpy as np\n",
"\n",
"scaler = preprocessing.MinMaxScaler(feature_range = (-1, 1))\n",
"trainingFeatures = scaler.fit_transform(np.concatenate(featuresSnare, featuresKick))"
"training_features = scaler.fit_transform(np.concatenate(features_snare, features_kick))"
],
"language": "python",
"metadata": {},
......@@ -120,7 +120,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
"model_snare.fit(trainingFeatures, labels)"
"model_snare.fit(training_features, labels)"
],
"language": "python",
"metadata": {},
......@@ -160,7 +160,7 @@
"collapsed": false,
"input": [
"# This uses the previous calculated linear scaling parameters to adjust the incoming features to the same range. \n",
"featuresScaled = scaler.transform(features)"
"features_scaled = scaler.transform(testing_features)"
],
"language": "python",
"metadata": {},
......@@ -189,7 +189,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
"model_output = model_snare.predict(featuresScaled)"
"model_output = model_snare.predict(features_scaled)"
],
"language": "python",
"metadata": {},
......
{
"metadata": {
"name": "",
"signature": "sha256:b4779de8997f272445c84c210f3048f03d085c9dd003e7005e82662dc0906c79"
"signature": "sha256:5c8a1491c612554fe6edacbb321684b7ecb68a0f323f9c38556a19eb5bab8936"
},
"nbformat": 3,
"nbformat_minor": 0,
......@@ -35,7 +35,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we want to analyze and feature extract a small collection of audio samples - storing their feature data as our \"training data\". The commands below read all of the drum example .wav files from the MIR web site into an array, snareFileList. \n",
"First, we want to analyze and feature extract a small collection of audio samples - storing their feature data as our \"training data\". The commands below read all of the drum example .wav files from the MIR web site into an array, `snare_file_list`. \n",
"\n",
"Let's define a function to retrieve a list of URLs from a text file."
]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment