Commit 528ac1fd authored by Steve Tjoa's avatar Steve Tjoa

factored more out of lab 3: mfccs, segmentation, etc.

parent 4fcb48c6
{ {
"metadata": { "metadata": {
"name": "", "name": "",
"signature": "sha256:fee871f8d8f5b66df2844daf79ffb4871bb3968bdedf0dfc5fe58bc2ef4bc7b6" "signature": "sha256:1b40a8d8876543c0c76b15b5f61ce11a51ef19462649aca9f838b884ea509d9d"
}, },
"nbformat": 3, "nbformat": 3,
"nbformat_minor": 0, "nbformat_minor": 0,
"worksheets": [ "worksheets": [
{ {
"cells": [ "cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CCRMA Workshop on Music Information Retrieval"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Table of Contents"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Introduction"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"CCRMA Workshop on Music Information Retrieval\n",
"=============================================\n",
"\n",
"Table of Contents\n",
"-----------------\n",
"\n",
"### Introduction\n",
"\n",
"- [About This Workshop](notebooks/about_this_workshop.ipynb)\n", "- [About This Workshop](notebooks/about_this_workshop.ipynb)\n",
"\n",
"- [Getting Good at IPython](notebooks/get_good_at_ipython.ipynb)\n", "- [Getting Good at IPython](notebooks/get_good_at_ipython.ipynb)\n",
"\n",
"- [Using Audio in IPython](notebooks/ipython_audio.ipynb)\n", "- [Using Audio in IPython](notebooks/ipython_audio.ipynb)\n",
"\n", "- [Python Basics](notebooks/python_basics.ipynb)\n",
"### Day 1\n", "- [NumPy, SciPy, Matplotlib Basics](notebooks/numpy_basics.ipynb)"
"\n", ]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Day 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. [Onset Detection](notebooks/)\n", "1. [Onset Detection](notebooks/)\n",
"\n", "1. [Segmentation](notebooks/segmentation.ipynb)\n",
"1. [Basic Segmentation and Feature Extraction](notebooks/)\n", "1. [Feature Extraction](notebooks/feature_extraction.ipynb)\n",
"\n",
"1. [Example: Zero-Crossing Rate](notebooks/zcr.ipynb)\n",
"\n",
"1. [Spectral Features](notebooks/spectral_features.ipynb)\n", "1. [Spectral Features](notebooks/spectral_features.ipynb)\n",
"\n", "1. [K-Nearest Neighbor](notebooks/knn.ipynb)"
"1. [K-Nearest Neighbor](notebooks/knn.ipynb)\n", ]
"\n", },
"### Day 2\n", {
"\n", "cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Other Topics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. [Segmentation](notebooks/)\n", "1. [Segmentation](notebooks/)\n",
"\n", "\n",
"1. [Mel-Frequency Ceptral Coefficients](notebooks/mfcc.ipynb)\n", "1. [Mel-Frequency Ceptral Coefficients](notebooks/mfcc.ipynb)\n",
"\n", "\n",
"1. [Cross Validation](notebooks/cross_validation.ipynb)\n", "1. [Cross Validation](notebooks/cross_validation.ipynb)"
"\n", ]
"### Day 3\n", },
"\n", {
"cell_type": "markdown",
"metadata": {},
"source": [
"1. [Unsupervised Classification]()\n", "1. [Unsupervised Classification]()\n",
"\n", "\n",
"### Day 4\n",
"\n",
"1. [Nonnegative Matrix Factorization](notebooks/nmf.ipynb)\n", "1. [Nonnegative Matrix Factorization](notebooks/nmf.ipynb)\n",
"\n", "\n",
"1. [Source Separation]()\n", "1. [Source Separation]()\n"
"\n",
"### Day 5\n"
] ]
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
} }
], ],
"metadata": {} "metadata": {}
......
{ {
"metadata": { "metadata": {
"name": "", "name": "",
"signature": "sha256:b2601021bd013cb3fdcacb2e0157136ad11d85f587ddf0ff2b13b65d9283ef7f" "signature": "sha256:cd4472e8ac0f4f801a3205494dfe44e1ada8a471f6bfeab2687bc72cc86c3a63"
}, },
"nbformat": 3, "nbformat": 3,
"nbformat_minor": 0, "nbformat_minor": 0,
...@@ -34,6 +34,39 @@ ...@@ -34,6 +34,39 @@
"- 2014: Jay LeBoeuf, Leigh Smith, Steve Tjoa\n" "- 2014: Jay LeBoeuf, Leigh Smith, Steve Tjoa\n"
] ]
}, },
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Guest Lecturers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- 2011: Rebecca Fiebrink, Doug Eck, George Tzanetakis\n",
"- 2012: Oscar Celma, Michael Mandel\n",
"- 2013: Ching-Wei Chen, Nick Bryan, Gautham Mysore\n",
"- 2014: Stephen Pope, Andreas Ehmann"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Alumni"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- 2011: Chris Colatos, Jeff Albert, Kamlesh Lakshminarayanan, Sean Zhang, Eli Stine, David Bird, Gina Collecchia, Dekun Zou, Bill Paseman, John Amuedo"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
......
This diff is collapsed.
{ {
"metadata": { "metadata": {
"name": "", "name": "",
"signature": "sha256:6d4d8f02ec3a6e31bac7c35b68acdd27227e96b152d2e69d76283b9c7e1b31a5" "signature": "sha256:26be3747209e886db08a0058c8a09bc10e73e0f751c2a409d339ea69f4a6124c"
}, },
"nbformat": 3, "nbformat": 3,
"nbformat_minor": 0, "nbformat_minor": 0,
"worksheets": [ "worksheets": [
{ {
"cells": [ "cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Spectral Features"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Spectral Features\n",
"-----------------\n",
"\n",
"For classification, we're going to be using the new features in our arsenal: cherishing those \"spectral moments\" (centroid, bandwidth, skewness, kurtosis) and also examining other spectral statistics." "For classification, we're going to be using the new features in our arsenal: cherishing those \"spectral moments\" (centroid, bandwidth, skewness, kurtosis) and also examining other spectral statistics."
] ]
}, },
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Training Data"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Training Data\n", "First, we want to analyze and feature extract a small collection of audio samples - storing their feature data as our \"training data\". The commands below read all of the drum example .wav files from the MIR web site into an array, snareFileList. \n",
"\n",
"First off, we want to analyze and feature extract a small collection of audio samples - storing their feature data as our \"training data\". The commands below read all of the drum example .wav files from the MIR web site into an array, snareFileList. \n",
"\n", "\n",
"First we define a function to retrieve a list of URLs from a text file." "Let's define a function to retrieve a list of URLs from a text file."
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment