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CS 229, Fall 2017
Problem Set #1: Supervised Learning

Due Wednesday, Oct 18 at 11:59 pm on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at http://piazza.com/stanford/fall2017/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a copy of your code
(with comments) and any figures that you are asked to plot. If typing your solutions, include
your code as text in your PDF. Do not submit extra files. (5) To account for late days, the due
date listed on Gradescope is Oct 21 at 11:59 pm. If you submit after Oct 18, you will begin
consuming your late days. If you wish to submit on time, submit before Oct 18 at 11:59 pm.

All students must submit an electronic PDF version. We highly recommend typesetting your
solutions via latex. If you are scanning your document by cell phone, please check the Piazza
forum for recommended scanning apps and best practices.

1. [25 points] Logistic regression

(a) [10 points] Consider the average empirical loss (the risk) for logistic regression:

J(θ) =
1

m

m∑

i=1

log(1 + e−y(i)θT x(i)

) = − 1

m

m∑

i=1

log(hθ(y
(i)x(i)))

where y(i) ∈ {−1, 1}, hθ(x) = g(θTx) and g(z) = 1/(1 + e−z). Find the Hessian H of this
function, and show that for any vector z, it holds true that

zTHz ≥ 0.

Hint: Be careful that the range for label values, {−1, 1}, is different than the range used
in lecture notes, which is {0, 1}. Please read the supplementary notes if you are having
trouble. You might want to start by showing the fact that

∑
i

∑
j zixixjzj = (xT z)2 ≥ 0.

Remark: This is one of the standard ways of showing that the matrix H is positive semi-
definite, written “H � 0.” This implies that J is convex, and has no local minima other
than the global one.1 If you have some other way of showing H � 0, you’re also welcome
to use your method instead of the one above.

(b) [10 points] We have provided two data files:

• http://cs229.stanford.edu/ps/ps1/logistic_x.txt

• http://cs229.stanford.edu/ps/ps1/logistic_y.txt

These files contain the inputs (x(i) ∈ R
2) and outputs (y(i) ∈ {−1, 1}), respectively for a

binary classification problem, with one training example per row. Implement2 Newton’s
method for optimizing J(θ), and apply it to fit a logistic regression model to the data.
Initialize Newton’s method with θ = ~0 (the vector of all zeros). What are the coefficients θ
resulting from your fit? (Remember to include the intercept term.)

1If you haven’t seen this result before, please feel encouraged to ask us about it during office hours.
2Write your own version, and do not call a built-in library function.
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(c) [5 points] Plot the training data (your axes should be x1 and x2, corresponding to the two
coordinates of the inputs, and you should use a different symbol for each point plotted to
indicate whether that example had label 1 or -1). Also plot on the same figure the decision
boundary fit by logistic regression. (This should be a straight line showing the boundary
separating the region where hθ(x) > 0.5 from where hθ(x) ≤ 0.5.)

2. [15 points] Poisson regression and the exponential family

(a) [5 points] Consider the Poisson distribution parameterized by λ:

p(y;λ) =
e−λλy

y!
.

Show that the Poisson distribution is in the exponential family, and clearly state what are
b(y), η, T (y), and a(η).

(b) [3 points] Consider performing regression using a GLM model with a Poisson response
variable. What is the canonical response function for the family? (You may use the fact
that a Poisson random variable with parameter λ has mean λ.)

(c) [7 points] For a training set {(x(i), y(i)); i = 1, . . . ,m}, let the log-likelihood of an example
be log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with respect to θj , derive
the stochastic gradient ascent rule for learning using a GLM model with Poisson responses
y and the canonical response function.

(d) [3 extra credit points] Consider using GLM with a response variable from any member
of the exponential family in which T (y) = y, and the canonical response function h(x) for
the family. Show that stochastic gradient ascent on the log-likelihood log p(~y|X; θ) results
in the update rule θi := θi − α(h(x)− y)xi.

3. [15 points] Gaussian discriminant analysis

Suppose we are given a dataset {(x(i), y(i)); i = 1, . . . ,m} consisting of m independent exam-
ples, where x(i) ∈ R

n are n-dimensional vectors, and y(i) ∈ {−1, 1}. We will model the joint
distribution of (x, y) according to:

p(y) =

{
φ if y = 1

1− φ if y = −1

p(x|y = −1) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ−1)

TΣ−1(x− µ−1)

)

p(x|y = 1) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ1)

TΣ−1(x− µ1)

)

Here, the parameters of our model are φ, Σ, µ−1 and µ1. (Note that while there’re two different
mean vectors µ−1 and µ1, there’s only one covariance matrix Σ.)

(a) [5 points] Suppose we have already fit φ, Σ, µ−1 and µ1, and now want to make a prediction
at some new query point x. Show that the posterior distribution of the label at x takes the
form of a logistic function, and can be written

p(y | x;φ,Σ, µ−1, µ1) =
1

1 + exp(−y(θTx+ θ0))
,
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where θ ∈ R
n and the bias term θ0 ∈ R are some appropriate functions of φ,Σ, µ−1, µ1.

(Note: the term θ0 corresponds to introducing an extra coordinate x
(i)
0 = 1, as we did in

class.)

(b) [10 points] For this part of the problem only, you may assume n (the dimension of x) is 1, so
that Σ = [σ2] is just a real number, and likewise the determinant of Σ is given by |Σ| = σ2.
Given the dataset, we claim that the maximum likelihood estimates of the parameters are
given by

φ =
1

m

m∑

i=1

1{y(i) = 1}

µ−1 =

∑m
i=1 1{y(i) = −1}x(i)

∑m
i=1 1{y(i) = −1}

µ1 =

∑m
i=1 1{y(i) = 1}x(i)

∑m
i=1 1{y(i) = 1}

Σ =
1

m

m∑

i=1

(x(i) − µy(i))(x(i) − µy(i))T

The log-likelihood of the data is

ℓ(φ, µ−1, µ1,Σ) = log

m∏

i=1

p(x(i), y(i);φ, µ−1, µ1,Σ)

= log

m∏

i=1

p(x(i)|y(i);µ−1, µ1,Σ)p(y
(i);φ).

By maximizing ℓ with respect to the four parameters, prove that the maximum likelihood
estimates of φ, µ−1, µ1, and Σ are indeed as given in the formulas above. (You may assume
that there is at least one positive and one negative example, so that the denominators in
the definitions of µ−1 and µ1 above are non-zero.)

(c) [3 extra credit points] Without assuming that n = 1, show that the maximum likelihood
estimates of φ, µ−1, µ1, and Σ are as given in the formulas in part (b). [Note: If you’re
fairly sure that you have the answer to this part right, you don’t have to do part (b), since
that’s just a special case.]

4. [10 points] Linear invariance of optimization algorithms

Consider using an iterative optimization algorithm (such as Newton’s method, or gradient de-
scent) to minimize some continuously differentiable function f(x). Suppose we initialize the
algorithm at x(0) = ~0. When the algorithm is run, it will produce a value of x ∈ R

n for each
iteration: x(1), x(2), . . ..

Now, let some non-singular square matrix A ∈ R
n×n be given, and define a new function

g(z) = f(Az). Consider using the same iterative optimization algorithm to optimize g (with
initialization z(0) = ~0). If the values z(1), z(2), . . . produced by this method necessarily satisfy
z(i) = A−1x(i) for all i, we say this optimization algorithm is invariant to linear reparame-
terizations.

(a) [7 points] Show that Newton’s method (applied to find the minimum of a function) is
invariant to linear reparameterizations. Note that since z(0) = ~0 = A−1x(0), it is sufficient
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to show that if Newton’s method applied to f(x) updates x(i) to x(i+1), then Newton’s
method applied to g(z) will update z(i) = A−1x(i) to z(i+1) = A−1x(i+1).3

(b) [3 points] Is gradient descent invariant to linear reparameterizations? Justify your answer.

5. [35 points] Regression for denoising quasar spectra4

Introduction. In this problem, we will apply a supervised learning technique to estimate the
light spectrum of quasars. Quasars are luminous distant galactic nuclei that are so bright, their
light overwhelms that of stars in their galaxies. Understanding properties of the spectrum of
light emitted by a quasar is useful for a number of tasks: first, a number of quasar properties
can be estimated from the spectra, and second, properties of the regions of the universe through
which the light passes can also be evaluated (for example, we can estimate the density of neutral
and ionized particles in the universe, which helps cosmologists understand the evolution and
fundamental laws governing its structure). The light spectrum is a curve that relates the light’s
intensity (formally, lumens per square meter), or luminous flux, to its wavelength. Figure 1
shows an example of a quasar light spectrum, where the wavelengths are measured in Angstroms
(Å), where 1Å= 10−10 meters.
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Figure 1: Light spectrum of a quasar. The blue line shows the intrinsic (i.e. original) flux spectrum
emitted by the quasar. The red line denotes the observed spectrum here on Earth. To the left of the
Lyman-α line, the observed flux is damped and the intrinsic (unabsorbed) flux continuum is not clearly
recognizable (red line). To the right of the Lyman-α line, the observed flux approximates the intrinsic
spectrum.

The Lyman-α wavelength is a wavelength beyond which intervening particles at most negligibly
interfere with light emitted from the quasar. (Interference generally occurs when a photon is

3Note that for this problem, you must explicitly prove any matrix calculus identities that you wish to use that
are not given in the lecture notes.

4Ciollaro, Mattia, et al. “Functional regression for quasar spectra.” arXiv:1404.3168 (2014).
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absorbed by a neutral hydrogen atom, which only occurs for certain wavelengths of light.) For
wavelengths greater than this Lyman-α wavelength, the observed light spectrum fobs can be
modeled as a smooth spectrum f plus noise:

fobs(λ) = f(λ) + noise(λ)

For wavelengths below the Lyman-α wavelength, a region of the spectrum known as the Lyman-
α forest, intervening matter causes attenuation of the observed signal. As light emitted by the
quasar travels through regions of the universe richer in neutral hydrogen, some of it is absorbed,
which we model as

fobs(λ) = absorption(λ) · f(λ) + noise(λ)

Astrophysicists and cosmologists wish to understand the absorption function, which gives infor-
mation about the Lyman-α forest, and hence the distribution of neutral hydrogen in otherwise
unreachable regions of the universe. This gives clues toward the formation and evolution of the
universe. Thus, it is our goal to estimate the spectrum f of an observed quasar.

Getting the data. We will be using data generated from the Hubble Space Telescope Faint
Object Spectrograph (HST-FOS), Spectra of Active Galactic Nuclei and Quasars.5 We have
provided two comma-separated data files located at:

• Training set: http://cs229.stanford.edu/ps/ps1/quasar_train.csv

• Test set: http://cs229.stanford.edu/ps/ps1/quasar_test.csv

Each file contains a single header row containing 450 numbers corresponding integral wavelengths
in the interval [1150, 1600] Å. The remaining lines contain relative flux measurements for each
wavelength. Specifically, quasar train.csv contains 200 examples and quasar test.csv con-
tains 50 examples. You may use the helper file load quasar data.m to load the data in Matlab:
http://cs229.stanford.edu/ps/ps1/load_quasar_data.m

(a) [10 points] Locally weighted linear regression

Consider a linear regression problem in which we want to “weight” different training exam-
ples differently. Specifically, suppose we want to minimize

J(θ) =
1

2

m∑

i=1

w(i)
(
θTx(i) − y(i)

)2

In class, we worked out what happens for the case where all the weights (the w(i)’s) are the
same. In this problem, we will generalize some of those ideas to the weighted setting.

i. [2 points] Show that J(θ) can also be written

J(θ) = (Xθ − ~y)TW (Xθ − ~y)

for an appropriate diagonal matrix W , and where X and ~y are as defined in class. State
clearly what W is.

ii. [4 points] If all the w(i)’s equal 1, then we saw in class that the normal equation is

XTXθ = XT~y,

5https://hea-www.harvard.edu/FOSAGN/
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and that the value of θ that minimizes J(θ) is given by (XTX)−1XT~y. By finding
the derivative ∇θJ(θ) and setting that to zero, generalize the normal equation to this
weighted setting, and give the new value of θ that minimizes J(θ) in closed form as a
function of X, W and ~y.

iii. [4 points] Suppose we have a training set {(x(i), y(i)); i = 1 . . . ,m} of m independent
examples, but in which the y(i)’s were observed with differing variances. Specifically,
suppose that

p(y(i)|x(i); θ) =
1√

2πσ(i)
exp

(
− (y(i) − θTx(i))2

2(σ(i))2

)

I.e., y(i) has mean θTx(i) and variance (σ(i))2 (where the σ(i)’s are fixed, known, con-
stants). Show that finding the maximum likelihood estimate of θ reduces to solving a
weighted linear regression problem. State clearly what the w(i)’s are in terms of the
σ(i)’s.

(b) [6 points] Visualizing the data

i. [2 points] Use the normal equations to implement (unweighted) linear regression (y =
θTx) on the first training example (i.e. first non-header row). On one figure, plot both
the raw data and the straight line resulting from your fit. State the optimal θ resulting
from the linear regression. Remember the intercept term (your optimal θ should lie in
R

2).

ii. [2 points] Implement locally weighted linear regression on the first training example.
Use the normal equations you derived in part (a)(ii). On a different figure, plot both
the raw data and the smooth curve resulting from your fit. When evaluating h(·) at a
query point x, use weights

w(i) = exp

(
− (x− x(i))2

2τ2

)
,

with bandwidth parameter τ = 5.

iii. [2 points] Repeat (b)(ii) four more times with τ = 1, 10, 100 and 1000. Plot the resulting
curves. You can submit one plot with all four τ values or submit four separate plots. If
you submit one plot, make sure all curves are visible. Additionally, in 2-3 sentences,
comment on what happens to the locally weighted linear regression line as τ varies.

(c) [19 points] Predicting quasar spectra with functional regression

We now go a step beyond what we have covered explicitly in class, and we wish to predict
an entire part of a spectrum—a curve—from noisy observed data. We begin by supposing
that we observe a random sample of m absorption-free spectra, which is possible for quasars
very close (in a sense relative to the size of the universe!) to Earth. For a given spectrum f ,
define fright to be the spectrum to the right of the Lyman-α line. Let fleft be the spectrum
within the Lyman-α forest region, that is, for lower wavelengths. To make the results
cleaner, we define:

f(λ) =

{
fleft(λ) if λ < 1200

fright(λ) if λ ≥ 1300

We will learn a function r (for regression) that maps an observed fright to an unobserved
target fleft (note that fleft and fright don’t cover the entire spectrum). This is useful in
practice because we observe fright with only random noise: there is no systematic absorp-
tion, which we cannot observe directly, because hydrogen does not absorb photons with
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higher wavelengths. By predicting fleft from a noisy version of fright, we can estimate the
unobservable spectrum of a quasar as well as the absorption function. Imaging systems
collect data of the form

fobs(λ) = absorption(λ) · f(λ) + noise(λ)

for λ ∈ {λ1, . . . , λn}, a finite number of points λ, because they must quantize the informa-
tion. That is, even in the quasars-close-to-Earth training data, our observations of fleft and
fright consist of noisy evaluations of the true spectrum f at multiple wavelengths. In our
case, we have n = 450 and λ1 = 1150, . . . , λn = 1599.

We formulate the functional regression task as the goal of learning the function r mapping
fright to fleft:

r(fright)(λ) = E(fleft | fright)(λ)
for λ in the Lyman-α forest.

i. [1 points] First, we must smooth the data in the training dataset to make it more useful
for prediction. For each i = 1, . . . ,m, define f (i)(λ) to be the weighted linear regression
estimate the ith spectrum. Use your code from part (b)(ii) above to smooth all spectra
in the training set using τ = 5. Do the same for the test set. Apply smoothing to the
entire spectrums (including both fleft and fright) for both train and test. We will now
operate on these smoothed spectra.

ii. [14 points] Using your estimated regression functions f (i) for i = 1, . . . ,m, we now
wish to estimate the unobserved spectrum fleft of a quasar from its (noisy) observed
spectrum fright. To do so, we perform a weighted regression of the locally weighted

regressions. In particular, given a new noisy spectrum observation:

fobs(λ) = f(λ) + noise(λ) for λ ∈ {1300, . . . , 1599}.

We define a metric d which takes as input, two spectra f1 and f2, and outputs a scalar:

d(f1, f2) =
∑

i

(
f1(λi)− f2(λi)

)2

.

The metric d computes squared distance between the new datapoint and previous
datapoints. If f1 and f2 are right spectra, then we take the preceding sum only over
λ ∈ {1300, . . . , 1599}, rather than the entire spectrum.
Based on this distance function, we may define the nonparametric functional regression
estimator, which is a locally weighted sum of functions fleft from the training data (this
is like locally weighted linear regression, except that instead of predicting y ∈ R we
predict a function fleft). Specifically, let fright denote the right side of a spectrum, which
we have smoothed using locally weighted linear regression (as you were told to do in
the previous part of the problem). We wish to estimate the associated left spectrum
fleft. Define the function ker(t) = max{1 − t, 0} and let neighbk(fright) denote the k
indices i ∈ {1, 2, . . . ,m} of the training set that are closest to fright, that is

d(f
(i)
right, fright) < d(f

(j)
right, fright) for all i ∈ neighbk(fright), j 6∈ neighbk(fright)

and neighbk(fright) contains exactly k indices. In addition, let

h := max
i∈{1,...,m}

d(f
(i)
right, fright).
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Then define the estimated function f̂left : R → R by

f̂left(λ) =

∑
i∈neighb

k
(fright)

ker(d(f
(i)
right, fright)/h)f

(i)
left(λ)

∑
i∈neighb

k
(fright)

ker(d(f
(i)
right, fright)/h)

. (1)

Include fright from training in its own neighborhood. Recall that f
(i)
right is the smoothed

(weighted linear regression) estimate of the ith training spectrum.
Construct the functional regression estimate (1) for each spectrum in the entire training

set using k = 3 nearest neighbors: for each j = 1, . . . ,m, construct the estimator f̂left
from (1) using fright = f

(j)
right. Then compute the error d(f

(j)
left, f̂left) between the true

spectrum f
(j)
left and your estimated spectrum f̂left for each j, and return the average

over the training data. What is your average training error?

iii. [4 points] Perform functional regression on the test set using the same procedure as in

the previous subquestion. Note: You must use neighbors f
(i)
right, f

(i)
left from the training

set, and fright in the test set to predict the corresonding fleft in the test set. What
is your average test error? For test examples 1 and 6, include a plot with both the

entire smooth spectrum and the fitted curve f̂left curve on the same graph. You should
submit two plots: one for test example 1 and one for test example 6.

Reminder: Please include in your submission a copy of your code and figures for the program-
ming questions.


