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Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all
of this is my own work.

1. Logistic regression

Average empirical loss for logistic regression:
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Let’s show that for any vector z,
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For any vector z, g(z) € [0, 1], hence 2T Hz > 0.
This implies that H is positive semi-definite, therefore J is convex and has no local
minima other than the global one.

(b) After implementing Newton’s method for optimizing J(#) and applying it to fit a
logistic regression model to the data, I obtained a parameter vector:
0 = [—2.61847133,0.75979248, 1.1707512]T.
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Figure 1: Training data and decision boundary fit by logistic regression



2. Poisson regression and the exponential family

(a) We consider the Poisson distribution parametrized by A:
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p(y; A) = = b(y)(exp(n"T(y) — a(n))

The Poisson distribution is in the exponential family, with:

bly) =1

1 = log(A)
T(y) =y
a(n) =A=¢"

(b) We want to perform regression using a GLM model with a Poisson response vari-
able. To construct the GLM model, we make the following assumptions: - y|z;6 ~
ExponentialFamily(n)

- our goal is to predict the expected value of T'(y) given x. Because T(y)=y, this means
we would like the hypothesis hy(z) to satisfy: hg(x) = E [y|z]

- The natural parameter n and the inputs z are related linearly y = 07z It follows that
our hypothesis will output:
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Therefore, the canonical response of this family is g(z) = h(672) = e*.
(¢) Our model assumes that the conditional probability of y given z is:
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We now maximize the likelihood L(6) of our parameter 6 using gradient ascent.
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We obtain the following stochastic gradient ascent update rule:
0; =0+ a:vy)(y(i) — ho(x®)) with he(x) = ' *

(d) We now use GLM for any member of the exponential family for which T'(y) = y, and
the canonical response h(x) for the family. From our model’s assumptions,

p(ylX;0) = b(y)(exp(n" T(y) — a(n)) = b(y)(exp(n”y — a(n))
0(0) =logp(y|X;6) =n"y — a(n) + log(b(y))



For a single parameter 6;,
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To determine a(n), we use the fact that for p(y|X;0) to be a pdf, it must integrate to
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Let f be a differentiable function such that a(n) = log f(n). Using the chain rule,
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It follows that:
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Therefore, the stochastic gradient ascent on the log likelihood of p(y|X;#) results in
the update rule:

0; = 0; — a(he(x) — y);

5. Regression for denoising quasar spectra

(a) Locally weighted linear regression
We want to minimize

70) = 3 D w0 e — 0y

where w(® is the weight for a training example ().
Let X be the m-by-d + 1 design matrix that contains the training examples’ input
values in its rows and y be an m-dimensional vector containing all the target values
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Then,




