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1. Logistic regression

Average empirical loss for logistic regression:

J(θ) = − 1
m

m∑
i=1

log(hθ(y
ixi))

where y(i) ∈ {−1, 1}, hθ(x)) = g(θTx) and g(z) = 1/(1 + e−z)

(a)

∇θJ(θ) = − 1

m

m∑
i=1

1

g(θTy(i)x(i))
∇θg(θTy(i)x(i))

= − 1

m

m∑
i=1

1

g(θTy(i)x(i))
y(i)x(i)g(θTy(i)x(i))(1− g(θTy(i)x(i)))

= − 1

m

m∑
i=1

1

y

(i)

x(i)(1− g(θTy(i)x(i)))

Hi,j =
∂

∂θj
[∇θJ(θ)]i =

1

m

m∑
i=1

(y(i))2x
(i)
j x

(i)
i g(θTy(i)x(i))(1− g(θTy(i)x(i)))

=
∂

∂θj
[∇θJ(θ)]i H is symmetric
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Let’s show that for any vector z,
zTHz ≥ 0 ∑

i

∑
j

zixixjzj =
∑
i

zixi
∑
j

zjxj = (xT z)(xT z) = (xT z)2 ≥ 0

zTHz =
∑
i

zTi (Hz)i =
∑
i

∑
j

zi(Hi,j)zj

=
∑
i

∑
j

zi(
1

m

m∑
k=1

(y(k))2x
(k)
j x

(k)
i g(θTy(k)x(k))(1− g(θTy(k)x(k))))zj

=
1

m

m∑
k=1

∑
i

∑
j

(y(k))2zjx
(k)
j zix

(k)
i g(θTy(k)x(k))(1− g(θTy(k)x(k)))

=
1

m

m∑
k=1

(y(k))2g(θTy(k)x(k))(1− g(θTy(k)x(k)))((x(k))T z)2

For any vector z, g(z) ∈ [0, 1], hence zTHz ≥ 0.
This implies that H is positive semi-definite, therefore J is convex and has no local
minima other than the global one.

(b) After implementing Newton’s method for optimizing J(θ) and applying it to fit a
logistic regression model to the data, I obtained a parameter vector:
θ = [−2.61847133, 0.75979248, 1.1707512]T .

(c)

Figure 1: Training data and decision boundary fit by logistic regression
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2. Poisson regression and the exponential family

(a) We consider the Poisson distribution parametrized by λ:

p(y;λ) =
e−yλy

y!
=

exp(y log(λ)− λ)

y!
= b(y)(exp(ηTT (y)− a(η))

The Poisson distribution is in the exponential family, with:

b(y) = 1

η = log(λ)

T (y) = y

a(η) = λ = eη

(b) We want to perform regression using a GLM model with a Poisson response vari-
able. To construct the GLM model, we make the following assumptions: - y|x; θ ∼
ExponentialFamily(η)
- our goal is to predict the expected value of T (y) given x. Because T(y)=y, this means
we would like the hypothesis hθ(x) to satisfy: hθ(x) = E [y|x]
- The natural parameter η and the inputs x are related linearly y = θTx It follows that
our hypothesis will output:

hθ(x) = E [y|x] = λ = eη = eθ
T x

Therefore, the canonical response of this family is g(z) = h(θT z) = ez.

(c) Our model assumes that the conditional probability of y given x is:

p(y(i)|x(i); θ) =
exp(y(i)θTx(i) − eθT x(i))

y(i)!
We now maximize the likelihood L(θ) of our parameter θ using gradient ascent.

`(θ) = log(L(θ)) = log(p(y(i)|x(i); θ)) = y(i)θTx(i) − eθT x(i) − log(y(i)!)

∂`(θ)

∂θj
= y(i)x

(i)
j e

θT x(i) = x
(i)
j (y(i) − eθT x(i))

We obtain the following stochastic gradient ascent update rule:
θj := θj + αx

(i)
j (y(i) − hθ(x(i))) with hθ(x) = eθ

T x

(d) We now use GLM for any member of the exponential family for which T (y) = y, and
the canonical response h(x) for the family. From our model’s assumptions,

p(y|X; θ) = b(y)(exp(ηTT (y)− a(η)) = b(y)(exp(ηTy − a(η))

`(θ) = log p(y|X; θ) = ηTy − a(η) + log(b(y))
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For a single parameter θi,

∂`(θ)

∂θi
=

∂

∂θi
(θTx)Ty − ∂

∂θi
a(θTx)

To determine a(η), we use the fact that for p(y|X; θ) to be a pdf, it must integrate to
1. ∫

y

p(y|X; θ) dy = 1∫
y

b(y)(exp(ηTT (y)− a(η)) dy = 1

ea(η) =

∫
y

b(y) exp(ηTy)) dy

a(η) = log

∫
y

b(y) exp(ηTy)) dy

Let f be a differentiable function such that a(η) = log f(η). Using the chain rule,
∂a(η)
∂η

= ∂ log f(η)
∂η

= ∂f(η)
∂η

1
f(η)

. Hence,

∂a(η)

∂η
=

1∫
y
b(y) exp(ηTy)) dy

∫
y

b(y)
∂ exp(ηTy)

∂η
dy

=
1∫

y
b(y) exp(ηTy) dy

∫
y

b(y) exp(ηTy)
∂ηTy

∂η
dy

∂a(θTx)

∂θi
=

1∫
y
b(y) exp(ηTy)) dy

∫
y

b(y) exp(ηTy)
∂xT θy

∂θi
dy

=
1∫

y
b(y) exp(ηTy)) dy

∫
y

b(y) exp(ηTy)xiy dy

=

∫
y

b(y) exp(ηTy) dy∫
y
b(y) exp(ηTy) dy

xiy dy

=

∫
y

b(y)
exp(ηTy)

exp(a(η))
xiy dy

=

∫
y

p(y|X; θ)xi dy

= xi

∫
y

p(y|X; θ) dy = xiE [y|x; θ] = xihθ(x)

It follows that:

∂`(θ)

∂θi
=

∂

∂θi
(θTx)Ty − ∂

∂θi
a(θTx)

= xiy − xihθ(x) = xi(y − hθ(x))
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Therefore, the stochastic gradient ascent on the log likelihood of p(y|X; θ) results in
the update rule:

θi := θi − α(hθ(x)− y)xi

5. Regression for denoising quasar spectra

(a) Locally weighted linear regression
We want to minimize

J(θ) =
1

2

m∑
i=1

w(i)(θTx(i) − y(i))2

where w(i) is the weight for a training example (i).
Let X be the m-by-d + 1 design matrix that contains the training examples’ input
values in its rows and y be an m-dimensional vector containing all the target values

from the training set: X =



| (x(1))T |

| (x(2))T |

...

| (x(m))T |

 ; y =


| y(1) |

| y(2) |

...
| y(m) |


(i)

(Xθ − y)j = (x(j))T θ − y(j)

[W (Xθ − y)]i = Wi(Xθ − y) =
m∑
i=1

Wi,j(x
(j))T θ − y(j)

(Xθ − y)Ti = (x(i))T θ − y(i)

(Xθ − y)TW (Xθ − y) =
m∑
i=1

(Xθ − y)Ti [W (Xθ − y)]i

=
m∑
i=1

(
(x(i))T θ − y(i)

)( m∑
i=1

Wi,j(x
(j))T θ − y(j)

)

Let

W =
1

2

w
(n) . . . (0)
...

. . .

(0) w(m)


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Then,

Wi,j =

{
w(i)

2
i = j

0 i 6= j

Hence,

(Xθ − y)TW (Xθ − y) =
m∑
i=1

(
(x(i))T θ − y(i)

)(w(i)

2
((x(i))T θ − y(i))

)
=

1

2

m∑
i=1

w(i)((x(i))T θ − y(i))
)2

= J(θ)
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