
CS229 Fall 2017, Problem Set #1:
Supervised Learning

Armand Sumo – armandsumo@gmail.com

April 28, 2021

Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all
of this is my own work.

1. Logistic regression

Average empirical loss for logistic regression:

J(θ) = − 1
m

m∑
i=1

log(hθ(y
ixi))

where y(i) ∈ {−1, 1}, hθ(x)) = g(θTx) and g(z) = 1/(1 + e−z)

(a)

∇θJ(θ) = − 1

m

m∑
i=1

1

g(θTy(i)x(i))
∇θg(θTy(i)x(i))

= − 1

m

m∑
i=1

1

g(θTy(i)x(i))
y(i)x(i)g(θTy(i)x(i))(1− g(θTy(i)x(i)))

= − 1

m

m∑
i=1

1

y

(i)

x(i)(1− g(θTy(i)x(i)))

Hi,j =
∂

∂θj
[∇θJ(θ)]i =

1

m

m∑
i=1

(y(i))2x
(i)
j x

(i)
i g(θTy(i)x(i))(1− g(θTy(i)x(i)))

=
∂

∂θj
[∇θJ(θ)]i H is symmetric

1

Let’s show that for any vector z,
zTHz ≥ 0 ∑

i

∑
j

zixixjzj =
∑
i

zixi
∑
j

zjxj = (xT z)(xT z) = (xT z)2 ≥ 0

zTHz =
∑
i

zTi (Hz)i =
∑
i

∑
j

zi(Hi,j)zj

=
∑
i

∑
j

zi(
1

m

m∑
k=1

(y(k))2x
(k)
j x

(k)
i g(θTy(k)x(k))(1− g(θTy(k)x(k))))zj

=
1

m

m∑
k=1

∑
i

∑
j

(y(k))2zjx
(k)
j zix

(k)
i g(θTy(k)x(k))(1− g(θTy(k)x(k)))

=
1

m

m∑
k=1

(y(k))2g(θTy(k)x(k))(1− g(θTy(k)x(k)))((x(k))T z)2

For any vector z, g(z) ∈ [0, 1], hence zTHz ≥ 0.
This implies that H is positive semi-definite, therefore J is convex and has no local
minima other than the global one.

(b) After implementing Newton’s method for optimizing J(θ) and applying it to fit a
logistic regression model to the data, I obtained a parameter vector:
θ = [−2.61847133, 0.75979248, 1.1707512]T .

(c)

Figure 1: Training data and decision boundary fit by logistic regression

2

2. Poisson regression and the exponential family

(a) We consider the Poisson distribution parametrized by λ:

p(y;λ) =
e−yλy

y!
=

exp(y log(λ)− λ)

y!
= b(y)(exp(ηTT (y)− a(η))

The Poisson distribution is in the exponential family, with:

b(y) = 1

η = log(λ)

T (y) = y

a(η) = λ = eη

(b) We want to perform regression using a GLM model with a Poisson response vari-
able. To construct the GLM model, we make the following assumptions: - y|x; θ ∼
ExponentialFamily(η)
- our goal is to predict the expected value of T (y) given x. Because T(y)=y, this means
we would like the hypothesis hθ(x) to satisfy: hθ(x) = E [y|x]
- The natural parameter η and the inputs x are related linearly y = θTx It follows that
our hypothesis will output:

hθ(x) = E [y|x] = λ = eη = eθ
T x

Therefore, the canonical response of this family is g(z) = h(θT z) = ez.

(c) Our model assumes that the conditional probability of y given x is:

p(y(i)|x(i); θ) =
exp(y(i)θTx(i) − eθT x(i))

y(i)!
We now maximize the likelihood L(θ) of our parameter θ using gradient ascent.

`(θ) = log(L(θ)) = log(p(y(i)|x(i); θ)) = y(i)θTx(i) − eθT x(i) − log(y(i)!)

∂`(θ)

∂θj
= y(i)x

(i)
j e

θT x(i) = x
(i)
j (y(i) − eθT x(i))

We obtain the following stochastic gradient ascent update rule:

θj := θj + αx
(i)
j (y(i) − hθ(x(i)))

with hθ(x) = eθ
T x

3

(d) We now use GLM for any member of the exponential family for which T (y) = y, and
the canonical response h(x) for the family. From our model’s assumptions,

p(y|X; θ) = b(y)(exp(ηTT (y)− a(η)) = b(y)(exp(ηTy − a(η))

`(θ) = log p(y|X; θ) = ηTy − a(η) + log(b(y))

For a single parameter θi,

∂`(θ)

∂θi
=

∂

∂θi
(θTx)Ty − ∂

∂θi
a(θTx)

To determine a(η), we use the fact that for p(y|X; θ) to be a pdf, it must integrate to
1. ∫

y

p(y|X; θ) dy = 1∫
y

b(y)(exp(ηTT (y)− a(η)) dy = 1

ea(η) =

∫
y

b(y) exp(ηTy)) dy

a(η) = log

∫
y

b(y) exp(ηTy)) dy

Let f be a differentiable function such that a(η) = log f(η). Using the chain rule,
∂a(η)
∂η

= ∂ log f(η)
∂η

= ∂f(η)
∂η

1
f(η)

. Hence,

∂a(η)

∂η
=

1∫
y
b(y) exp(ηTy)) dy

∫
y

b(y)
∂ exp(ηTy)

∂η
dy

=
1∫

y
b(y) exp(ηTy) dy

∫
y

b(y) exp(ηTy)
∂ηTy

∂η
dy

∂a(θTx)

∂θi
=

1∫
y
b(y) exp(ηTy)) dy

∫
y

b(y) exp(ηTy)
∂xT θy

∂θi
dy

=
1∫

y
b(y) exp(ηTy)) dy

∫
y

b(y) exp(ηTy)xiy dy

=

∫
y

b(y) exp(ηTy) dy∫
y
b(y) exp(ηTy) dy

xiy dy

=

∫
y

b(y)
exp(ηTy)

exp(a(η))
xiy dy

=

∫
y

p(y|X; θ)xi dy

= xi

∫
y

p(y|X; θ) dy = xiE [y|x; θ] = xihθ(x)

4

It follows that:

∂`(θ)

∂θi
=

∂

∂θi
(θTx)Ty − ∂

∂θi
a(θTx)

= xiy − xihθ(x) = xi(y − hθ(x))

Therefore, the stochastic gradient ascent on the log likelihood of p(y|X; θ) results in
the update rule:

θi := θi − α(hθ(x)− y)xi

3. Gaussian discriminant analysis

(a) Suppose we are given a dataset {(x(i), x(i)); i = 1, . . . ,m}, consisting of m independent
examples where x(i) ∈ Rn and y(i) ∈ {−1, 1}. We model the joint distribution of (x,y)
according to:

p(y) =

{
φ y = 1

1− φ y = −1
= φ1{y=1}(1− φ)1{y=−1}

p(x|y = −1) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ−1)TΣ−1(x− µ−1)

)
p(x|y = 1) =

1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ1)TΣ−1(x− µ1)

)
(There are two mean vectors µ1, µ−1 but only one covariance matrix Σ.)
Suppose we already fit φ,Σ, µ1 and µ−1 and want to make a prediction at some new
query point x. The posterior distribution of the label x takes the form:

p(y = 1|x;φ,Σ, µ1, µ−1) =
p(x|y = 1;φ,Σ, µ1, µ−1)p(y = 1)

p(x, φ,Σ, µ1, µ−1)

=
p(x|y = 1;φ,Σ, µ1, µ−1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = −1)p(y = −1)

=
1

1 +
p(x|y = −1)p(y = −1)

p(x|y = 1)p(y = 1)

=
1

1 +

exp

(
−1

2
(x− µ−1)TΣ−1(x− µ−1)

)
(1− φ)

exp

(
−1

2
(x− µ1)TΣ−1(x− µ1)

)
φ

5

Note that because x|y = 1 and x|y = −1 share the same covariance matrix Σ, the

terms in
1

(2π)n/2|Σ|1/2
cancel one another.

p(y = 1|x;φ,Σ, µ1, µ−1) =

1

1 + exp

(
log(

φ

1− φ
) − 1

2
(x− µ−1)TΣ−1(x− µ−1) +

1

2
(x− µ1)TΣ−1(x− µ1)

)
p(y = −1|x;φ,Σ, µ1, µ−1) =

1

1 + exp

(
log(

1− φ
φ

)− 1

2
(x− µ1)TΣ−1(x− µ1) +

1

2
(x− µ−1)TΣ−1(x− µ−1)

)
More generally,

p(y|x;φ,Σ, µ1, µ−1) =

1

1 + exp

y
(

log(
1− φ
φ

) −1

2
(x− µ−1)TΣ−1(x− µ−1) +

1

2
(x− µ1)TΣ−1(x− µ1)

)
︸ ︷︷ ︸

(1)



Let j = 1 or −1.

(x− µj)TΣj(x− µ1) = (xTΣ−1x− 2xTΣ−1uj + uTj Σ−1uj)

(Σ−1 is symmetric therefore xTΣ−1uj = uTj Σ−1x)

(1) =
1

2
(2xTΣ−1µ−1 − Σ−1µT−1µ−1 − 2xTΣ−1µ1 + Σ−1µT1 µ1)

=
1

2
(−Σ−1µT−1µ−1 + Σ−1µT1 µ1) + (Σ−1µ−1 − Σ−1µ1)Tx

Hence,

p(y = 1|x;φ,Σ, µ1, µ−1) =

1

1 + exp

(
−y(log(

φ

1− φ
) +

1

2
(−Σ−1µT−1µ−1 + Σ−1µT1 µ1) + (Σ−1µ1 − Σ−1µ−1)Tx

)
p(y = 1|x;φ,Σ, µ1, µ−1) =

1

1 + exp(−y(θ0 + θTx))

with

θ0 = log(
φ

1− φ
) +

1

2
(−Σ−1µT−1µ−1 + Σ−1µT1 µ1) and θ = Σ−1µ1 − Σ−1µ−1

6

(b) (proved in (c))

(c) The log likelihood of the data is:

`(φ,Σ, µ1, µ−1) = log
m∏
i=1

p(x(i), y(i), φ,Σ, µ1, µ−1)

= log
m∏
i=1

p(x(i)|y(i),Σ, µ1, µ−1)p(yi, φ)

=
m∑
i=1

log(p(yi, φ)) +
m∑
i=1

log(p(x(i)|y(i),Σ, µ1, µ−1))

`(φ,Σ, µ1, µ−1) =
∑m

i=1 log(φ1{y(i)=1}) + log((1− φ)1{y(i)=−1})

+
∑m

i=1 log

(
1

(2π)n/2|Σ|1/2

)
+

(
−1

2
(x(i) − µy(i))TΣ−1(x(i) − µy(i))

)
=
∑m

i=1 1{y(i) = 1} log(φ) + 1{y(i) = −1}log(1− φ)

−m log((2π)n/2|Σ|1/2)−
∑m

i=1

1

2
(x(i) − µy(i))TΣ−1(x(i) − µy(i))

In order to find the estimator of each of the parameters Σ,µ1, µ−1 and φ, we compute
the gradient of the log likelihood with respect to each parameter:

∇Σ`(φ,Σ, µ1, µ−1) = −∇Σm log((2π)n/2|Σ|1/2)−∇Σ
1

2
(x(i) − µy(i))TΣ−1(x(i) − µy(i))

∇Σ m log((2π)n/2|Σ|1/2) = −m
2
∇Σ(|Σ|)) =

∂ log(|Σ|)
∂|Σ|

∇Σ|Σ| =
1

|Σ|
(Σ−T |Σ|) = Σ−T

Since

∂

∂Σk,l

|Σ| = ∂

∂Σk,l

∑
i=1

n(−1)i+jΣi,j|Σ\i\j| = (−1)k+l|Σk\k,\l| = (adj(Σ))l,k

and

∇Σ|Σ| = adj(Σ)T = (|Σ|Σ−1)T = Σ−T |Σ|)

For a non-singular matrix X,
∂aTX−1b

∂X
= −X−TabTX−T

In our case,

∇Σ

m∑
i=1

1

2
(x(i) − µy(i))TΣ−1(x(i) − µy(i)) = −1

2

m∑
i=1

Σ−1(x(i) − µy(i))(x(i) − µy(i))TΣ−1

7

and

∇Σ`(φ,Σ, µ1, µ−1) = −m
2

Σ−1 +
1

2

m∑
i=1

Σ−1(x(i) − µy(i))(x(i) − µy(i))TΣ−1

At an extremum, the gradient is equal to the zero matrix,

0 = −mΣ−1 +
m∑
i=1

Σ−1(x(i) − µy(i))(x(i) − µy(i))TΣ−1

We obtain an estimator of the parameter Σ:

Σ =
1

m

m∑
i=1

(x(i) − µy(i))(x(i) − µy(i))T

∂

∂φ
`(φ,Σ, µ1, µ−1) =

1

φ

m∑
i=1

1{y(i) = 1} − 1

1− φ

m∑
i=1

1{y(i) = −1}

=
m∑
i=1

1{y(i) = 1}
φ

− 1{y(i) = −1}
φ

by setting it to the 0 vector,

0 =
m∑
i=1

(1− φ)1{y(i) = 1} − φ1{y(i) = −1}
φ(1− φ)

=
m∑
i=1

1{y(i) = 1} − φ1{y(i) = 1} − φ1{y(i) = −1}

=
m∑
i=1

1{y(i) = 1} − φ (1{y(i) = 1}+ 1{y(i) = −1})︸ ︷︷ ︸
=1

=
m∑
i=1

1{y(i) = 1} −mφ

We obtain the estimator of the parameter φ

φ =
1

m

m∑
i=1

1{y(i) = 1}

∇µ1`(φ,Σ, µ1, µ−1) = −1

2

m∑
i=1

∇µ11{y(i) = 1}(x(i) − µ1)TΣ−1(x(i) − µ1)

= −1

2

m∑
i=1

1{y(i) = 1}∇(x(i)−µ1)(x
(i) − µ1)TΣ−1(x(i) − µ1) · ∇µ1(x

(i) − µ1)

8

Σ−1 is symmetric therefore ∇(x(i)−µ1)(x
(i) − µ1)TΣ−1(x(i) − µ1) = 2 Σ−1(x(i) − µ1)

∇µ1`(φ,Σ, µ1, µ−1) =
m∑
i=1

1{y(i) = 1}Σ−1(x(i) − µ1)

at an extremum the gradient is equal to the zero vector,

0 =
m∑
i=1

1{y(i) = 1}Σ−1(x(i) − µ1)

by pre-multiplying both sides by Σ

0 =
m∑
i=1

1{y(i) = 1}(x(i) − µ1)

We obtain the estimator of the parameter µ1:

µ1 =

∑m
i=1 1{y(i) = 1}x(i)∑m
i=1 1{y(i) = 1}

conversely an estimator of the parameter µ−1,

µ−1 =

∑m
i=1 1{y(i) = −1}x(i)∑m
i=1 1{y(i) = −1}

4. Linear invariance of optimization algorithms

We consider using some iterative optimization algorithm (such as Newton’s method, or
gradient descent) to minimize some continuously differentiable function f(x) that can be
defined as

f : Rn 7→ Rm

x = (x1, . . . , xn)T → (f1(x1, . . . , xn)T , f2(x1, . . . , xn)T , . . . , fm(x1, . . . , xn)T)T

where the fi-s are continuously differentiable real-valued functions. Let A ∈ Rn×n be some
non-singular matrix and let’s define a function g, by g(z) = f(Az). Consider we use the
same iterative optimization algorithm to optimize g, (with initialization z(0) = ~0). The
optimization algorithm is said to be invariable to linear reparameterizations if the values
z(1), z(2), . . . satisfy z(i) = A−1x(i) for all i.

(a) We’ll show by induction that this is true for the Newton optimization algorithm. In
order to avoid tensor notation, we will restrict ourselves to a real valued (multivari-
able) function f , which is equivalent to studying the optimization algorithm for each

9

component fi of f(x).
The second order approximation of f near x(i) is the quadratic function of x(i) defined
by

f(x) = f(x(i)) +∇f(x(i))T (x− x(i)) +
1

2!
(x− x(i))THf(x(i))(x− x(i))

Where ∇f(x(i)) and Hf(x(i)) denote respectively the Gradient and Hessian f with
respect to x ,evaluated at a point x(i). We now take the gradient of both sides with
respect to x:
f(x(i)) is a constant so its gradient is ~0

∇x(∇f(x(i))T (x− x(i))) = ∇xf(x(i))

because f is continuously differentiable, its Hessian matrix is symmetric.Then,

∇x

(
1

2
(x− x(i))THf(x(i))(x− x(i))

)
= Hf(x(i))

At an extremum, ∇x(f(x)) = 0, the update rule follows:

x(i+1) = x(i) − (Hf(x(i)))−1∇xf(x(i))

because g is also continously differentiable, we get the update rule:

z(i+1) = z(i) − (Hg(z(i)))−1∇xg(z(i))

Base case: z(0) = ~0 = A−1x(0)

Induction step: we suppose that for a certain non-zero integer i, the following is true:

(Hi) : z(i) = A−1x(i)

Before going any further we must first prove the following equalities:
∇g(z) = AT∇f(Az) and Hg(z) = ATHf(Az)A

[∇g(z)]i =
∂g(z)

∂zi
=
∂f(Az)

∂zi
= ∇f(Az) · ∂f(Az)

∂zi
= ∇f(Az)A·,i

By convention, the gradient is a column vector so:

[∇g(z)] = AT∇f(Az)

Let h(z) = ∇g(z) = AT∇f(Az) The Hessian of g at z is

h′(z) = AT∇2f(Az)A

10

Where ’ denotes the derivative operator(transpose of the gradient).
We can now begin the induction step:

z(i+1) = z(i) −Hg(z(i))−1∇xg(z(i))

Az(i+1) = Az(i) − A(Hg(z(i)))−1∇xg(z(i))

= x(i) − A(AT∇2f(Az)A)−1AT∇f(x(i)) (Hi)

= x(i) − A(A−1Hf−1(x(i))A−T)AT∇f(x(i))

= x(i) −Hf−1(x(i))∇f(x(i)) = x(i+1)

Hence,

z(i+1) = A−1x(i+1)

Because it is true for an arbitrary non-zero integer i, we can conclude that ∀i ∈ N, z(i),
the Newton update is invariant to linear transformation.

(b) Following the same reasoning as in (a),
the gradient update of x can be expressed as, with α ∈ R:

x(i+1) = x(i) − α∇f (x
(i))

On z,

z(i+1) = z(i) − α∇g(z
(i)) = z(i) − α∇f (Az

(i)) = z(i) − αAT∇f (x
(i))

Az(i+1) = αAAT∇f (x
(i)) 6= x(i) − α∇f (x

(i)) = x(i+1)

(Assuming A is not the identity matrix.)
This shows that the gradient descent optimization algorithm is not invariant
to linear transformation.

5. Regression for denoising quasar spectra

(a) Locally weighted linear regression
We want to minimize

J(θ) =
1

2

m∑
i=1

w(i)(θTx(i) − y(i))2

where w(i) is the weight for a training example (i).
Let X be the m-by-d + 1 design matrix that contains the training examples’ input
values in its rows and y be an m-dimensional vector containing all the target values

from the training set: X =



| (x(1))T |

| (x(2))T |

...

| (x(m))T |

 ; y =



| y(1) |

| y(2) |

...

| y(m) |


11

(i)

(Xθ − y)j = (x(j))T θ − y(j)

[W (Xθ − y)]i = Wi(Xθ − y) =
m∑
i=1

Wi,j(x
(j))T θ − y(j)

(Xθ − y)Ti = (x(i))T θ − y(i)

(Xθ − y)TW (Xθ − y) =
m∑
i=1

(Xθ − y)Ti [W (Xθ − y)]i

=
m∑
i=1

(
(x(i))T θ − y(i)

)(m∑
i=1

Wi,j(x
(j))T θ − y(j)

)

Let

W =
1

2

w
(n) . . . (0)
...

. . .

(0) w(m)


Then,

Wi,j =

{
w(i)

2
i = j

0 i 6= j

Hence,

(Xθ − y)TW (Xθ − y) =
m∑
i=1

(
(x(i))T θ − y(i)

)(w(i)

2
((x(i))T θ − y(i))

)
=

1

2

m∑
i=1

w(i)((x(i))T θ − y(i))
)2

= J(θ)

12

