import numpy, scipy, matplotlib.pyplot as plt, pandas, librosa
print numpy.arange(5)
[0 1 2 3 4]
print numpy.linspace(0, 5, 10, endpoint=False)
[ 0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5]
print numpy.zeros(5)
[ 0. 0. 0. 0. 0.]
print numpy.ones(5)
[ 1. 1. 1. 1. 1.]
print numpy.ones((5,2))
[[ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.]]
print scipy.randn(5) # random Gaussian, zero-mean unit-variance
[ -1.12009510e+00 2.15875646e-03 -7.93208376e-01 -1.02710782e+00 2.37388108e+00]
print scipy.randn(5,2)
[[-0.60527349 -0.82200312] [-0.67330474 -0.12914043] [-0.71574719 -0.5962005 ] [-1.03690426 0.59078457] [-2.22983691 -1.70858604]]
x = numpy.arange(10)
print x[2:4]
[2 3]
print x[-1]
9
print x[0:8:2]
[0 2 4 6]
print x[4:2:-1]
[4 3]
print x[:4]
[0 1 2 3]
print x[:999]
[0 1 2 3 4 5 6 7 8 9]
print x[::-1]
[9 8 7 6 5 4 3 2 1 0]
x = numpy.arange(5)
y = numpy.ones(5)
print x+2*y
[ 2. 3. 4. 5. 6.]
x = scipy.randn(5)
y = numpy.ones(5)
print numpy.dot(x, y)
-4.36027379404
x = scipy.randn(5,3)
y = numpy.ones((3,2))
print numpy.dot(x, y)
[[ 0.9351335 0.9351335 ] [-4.22851009 -4.22851009] [-2.66983557 -2.66983557] [ 3.18545804 3.18545804] [ 1.82532797 1.82532797]]
x = numpy.arange(10)
print x < 5
[ True True True True True False False False False False]
y = numpy.ones(10)
print x < y
[ True False False False False False False False False False]
from scipy.spatial import distance
print distance.euclidean([0, 0], [3, 4])
print distance.sqeuclidean([0, 0], [3, 4])
print distance.cityblock([0, 0], [3, 4])
print distance.chebyshev([0, 0], [3, 4])
5.0 25.0 7 4
print distance.cosine([67, 0], [89, 0])
print distance.cosine([67, 0], [0, 89])
0.0 1.0
x = scipy.randn(5)
print x
x.sort()
print x
[ 0.70589021 0.14767722 0.06884379 0.37189002 0.43313129] [ 0.06884379 0.14767722 0.37189002 0.43313129 0.70589021]
x = scipy.randn(5)
print x
ind = numpy.argsort(x)
print ind
print x[ind]
[ 0.9443719 0.2831604 0.85627 0.22827583 -0.03939166] [4 3 1 2 0] [-0.03939166 0.22827583 0.2831604 0.85627 0.9443719 ]