%matplotlib inline
import seaborn
import numpy, scipy, scipy.spatial, matplotlib.pyplot as plt, IPython.display as ipd
import librosa, librosa.display
plt.rcParams['figure.figsize'] = (9, 7)
Load two audio files:
x1, sr1 = librosa.load('audio/sir_duke_oscar_dub_fast.mp3')
x2, sr2 = librosa.load('audio/sir_duke_oscar_dub_slow.mp3')
print sr1, sr2
Listen:
ipd.Audio(x1, rate=sr1)
ipd.Audio(x2, rate=sr2)
Compute chromagrams:
hop_length = 256
C1_cens = librosa.feature.chroma_cens(x1, sr=sr1, hop_length=hop_length)
C2_cens = librosa.feature.chroma_cens(x2, sr=sr2, hop_length=hop_length)
print C1_cens.shape
print C2_cens.shape
Compute CQT only for visualization:
C1_cqt = librosa.cqt(x1, sr=sr1, hop_length=hop_length)
C2_cqt = librosa.cqt(x2, sr=sr2, hop_length=hop_length)
C1_cqt_mag = librosa.amplitude_to_db(C1_cqt)
C2_cqt_mag = librosa.amplitude_to_db(C2_cqt)
Define DTW functions:
def dtw_table(x, y, distance=None):
if distance is None:
distance = scipy.spatial.distance.euclidean
nx = len(x)
ny = len(y)
table = [[0 for _ in range(ny+1)] for _ in range(nx+1)]
# Compute left column separately, i.e. j=0.
for i in range(1, nx+1):
table[i][0] = numpy.inf
# Compute top row separately, i.e. i=0.
for j in range(1, ny+1):
table[0][j] = numpy.inf
# Fill in the rest.
for i in range(1, nx+1):
for j in range(1, ny+1):
d = distance(x[i-1], y[j-1])
table[i][j] = d + min(table[i-1][j], table[i][j-1], table[i-1][j-1])
return numpy.array(table)
def dtw(x, y, table):
i = len(x)
j = len(y)
path = [(i, j)]
while i > 0 or j > 0:
minval = numpy.inf
if table[i-1][j] < minval:
minval = table[i-1][j]
step = (i-1, j)
if table[i][j-1] < minval:
minval = table[i][j-1]
step = (i, j-1)
if table[i-1][j-1] < minval:
minval = table[i-1][j-1]
step = (i-1, j-1)
path.insert(0, step)
i, j = step
return numpy.array(path)
Run DTW:
D = dtw_table(C1_cens.T, C2_cens.T, distance=scipy.spatial.distance.cityblock)
path = dtw(C1_cens.T, C2_cens.T, D)
Listen to the both recordings at the same alignment marker:
path.shape
i1, i2 = librosa.frames_to_samples(path[300], hop_length=hop_length)
print i1, i2
ipd.Audio(x1[i1:], rate=sr1)
ipd.Audio(x2[i2:], rate=sr2)
Visualize both signals and their alignment:
plt.figure(figsize=(9, 8))
# Top left plot.
ax2 = plt.axes([0, 0.2, 0.20, 0.8])
ax2.imshow(C2_cqt_mag.T[:,::-1], origin='lower', aspect='auto', cmap='coolwarm')
ax2.set_ylabel('Signal 2')
ax2.set_xticks([])
ax2.set_yticks([])
ax2.set_ylim(20)
# Bottom right plot.
ax1 = plt.axes([0.2, 0, 0.8, 0.20])
ax1.imshow(C1_cqt_mag, origin='lower', aspect='auto', cmap='coolwarm')
ax1.set_xlabel('Signal 1')
ax1.set_xticks([])
ax1.set_yticks([])
ax1.set_ylim(20)
# Top right plot.
ax3 = plt.axes([0.2, 0.2, 0.8, 0.8])
ax3.imshow(D.T, aspect='auto', origin='lower', interpolation='nearest', cmap='gray')
ax3.set_xticks([])
ax3.set_yticks([])
# Path.
ax3.plot(path[:,0], path[:,1], 'r')
plt.figure(figsize=(11, 5))
# Top plot.
ax1 = plt.axes([0, 0.60, 1, 0.40])
ax1.imshow(C1_cqt_mag, origin='lower', aspect='auto', cmap='coolwarm')
ax1.set_ylabel('Signal 1')
ax1.set_xticks([])
ax1.set_yticks([])
ax1.set_ylim(20)
# Bottom plot.
ax2 = plt.axes([0, 0, 1, 0.40])
ax2.imshow(C2_cqt_mag, origin='lower', aspect='auto', cmap='coolwarm')
ax2.set_ylabel('Signal 2')
ax2.set_xticks([])
ax2.set_yticks([])
ax2.set_ylim(20)
# Middle plot.
line_color = 'k'
step = 30
n1 = float(C1_cqt.shape[1])
n2 = float(C2_cqt.shape[1])
ax3 = plt.axes([0, 0.40, 1, 0.20])
for t in path[::step]:
ax3.plot((t[0]/n1, t[1]/n2), (1, -1), color=line_color)
ax3.set_xlim(0, 1)
ax3.set_ylim(-1, 1)
# Path markers on top and bottom plot.
y1_min, y1_max = ax1.get_ylim()
y2_min, y2_max = ax2.get_ylim()
ax1.vlines([t[0] for t in path[::step]], y1_min, y1_max, color=line_color)
ax2.vlines([t[1] for t in path[::step]], y2_min, y2_max, color=line_color)
ax3.set_xticks([])
ax3.set_yticks([])
Try each pair of audio files among the following:
ls audio/sir_duke*
Try adjusting the hop length, distance metric, and feature space.
Instead of chroma_cens
, try chroma_stft
or librosa.feature.mfcc
.
Try magnitude scaling the feature matrices, e.g. amplitude_to_db
or $\log(1 + \lambda x)$.