Commit 95677803 authored by Steve Tjoa's avatar Steve Tjoa

stft; chroma

parent 3cf45164
......@@ -11840,6 +11840,17 @@ div#notebook {
<td></td>
<td>Energy</td>
</tr>
<tr>
<td>Spectrogram</td>
<td><a href="stft.html">STFT and Spectrogram</a></td>
<td><a href="https://en.wikipedia.org/wiki/Spectrogram">Spectrogram</a></td>
<td></td>
<td>29, 55</td>
<td>STFT</td>
</tr>
<tr>
<td>Short-time Fourier transform</td>
</tr>
</tbody>
</table>
......
......@@ -29,7 +29,9 @@
"source": [
"|Term|musicinformationretrieval.com|Wikipedia|librosa|FMP|Related|\n",
"|-|-|-|-|-|-|\n",
"|Root-mean-square energy|[Energy and RMSE](energy.html)|[Root mean square](https://en.wikipedia.org/wiki/Root_mean_square)|[`librosa.feature.rmse`](https://librosa.github.io/librosa/generated/librosa.feature.rmse.html)| |Energy|\n"
"|Root-mean-square energy|[Energy and RMSE](energy.html)|[Root mean square](https://en.wikipedia.org/wiki/Root_mean_square)|[`librosa.feature.rmse`](https://librosa.github.io/librosa/generated/librosa.feature.rmse.html)| |Energy|\n",
"|Spectrogram|[STFT and Spectrogram](stft.html)|[Spectrogram](https://en.wikipedia.org/wiki/Spectrogram)||29, 55|STFT|\n",
"|Short-time Fourier transform|\n"
]
},
{
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -11863,8 +11863,8 @@ div#notebook {
<li><a href="energy.html">Energy and RMSE</a> (<a href="energy.ipynb">ipynb</a>)</li>
<li><a href="zcr.html">Zero Crossing Rate</a> (<a href="zcr.ipynb">ipynb</a>)</li>
<li><a href="fourier_transform.html">Fourier Transform</a> (<a href="fourier_transform.ipynb">ipynb</a>)</li>
<li><a href="stft.html">Short-Time Fourier Transform and CQT</a> (<a href="stft.ipynb">ipynb</a>)</li>
<li><a href="chroma.html">Chroma</a> (<a href="chroma.ipynb">ipynb</a>)</li>
<li><a href="stft.html">Short-time Fourier Transform and Spectrogram</a> (<a href="stft.ipynb">ipynb</a>)</li>
<li><a href="chroma.html">Constant-Q Transform and Chroma</a> (<a href="chroma.ipynb">ipynb</a>)</li>
<li><a href="spectral_features.html">Spectral Features</a> (<a href="spectral_features.ipynb">ipynb</a>)</li>
<li><a href="autocorrelation.html">Autocorrelation</a> (<a href="autocorrelation.ipynb">ipynb</a>)</li>
<li><a href="pitch_transcription_exercise.html">Pitch Transcription Exercise</a> (<a href="pitch_transcription_exercise.ipynb">ipynb</a>)</li>
......
......@@ -75,8 +75,8 @@
"1. [Energy and RMSE](energy.html) ([ipynb](energy.ipynb))\n",
"1. [Zero Crossing Rate](zcr.html) ([ipynb](zcr.ipynb))\n",
"1. [Fourier Transform](fourier_transform.html) ([ipynb](fourier_transform.ipynb))\n",
"1. [Short-Time Fourier Transform and CQT](stft.html) ([ipynb](stft.ipynb))\n",
"1. [Chroma](chroma.html) ([ipynb](chroma.ipynb))\n",
"1. [Short-time Fourier Transform and Spectrogram](stft.html) ([ipynb](stft.ipynb))\n",
"1. [Constant-Q Transform and Chroma](chroma.html) ([ipynb](chroma.ipynb))\n",
"1. [Spectral Features](spectral_features.html) ([ipynb](spectral_features.ipynb))\n",
"1. [Autocorrelation](autocorrelation.html) ([ipynb](autocorrelation.ipynb))\n",
"1. [Pitch Transcription Exercise](pitch_transcription_exercise.html) ([ipynb](pitch_transcription_exercise.ipynb))"
......
......@@ -11773,7 +11773,7 @@ div#notebook {
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="o">%</span><span class="k">matplotlib</span> inline
......@@ -11809,14 +11809,41 @@ div#notebook {
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's listen to a file:</p>
<p>Musical signals are highly non-stationary, i.e., their statistics change over time. It would be rather meaningless to compute a single Fourier transform over an entire 10-minute song.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The <strong>short-time Fourier transform (STFT)</strong> (<a href="https://en.wikipedia.org/wiki/Short-time_Fourier_transform">Wikipedia</a>; FMP, p. 53) is obtained by computing the Fourier transform for successive frames in a signal.</p>
$$ X(m, \omega) = \sum_n x(n) w(n-m) e^{-j \omega n} $$
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>As we increase $m$, we slide the window function $w$ to the right. For the resulting frame, $x(n) w(n-m)$, we compute the Fourier transform. Therefore, the STFT $X$ is a function of both time, $m$, and frequency, $\omega$.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's load a file:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="prompt input_prompt">In&nbsp;[20]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">x</span><span class="p">,</span> <span class="n">sr</span> <span class="o">=</span> <span class="n">librosa</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;audio/simple_piano.wav&#39;</span><span class="p">)</span>
......@@ -11833,7 +11860,7 @@ div#notebook {
<div class="output_area">
<div class="prompt output_prompt">Out[2]:</div>
<div class="prompt output_prompt">Out[20]:</div>
......@@ -11851,6 +11878,156 @@ div#notebook {
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><a href="https://librosa.github.io/librosa/generated/librosa.core.stft.html#librosa.core.stft"><code>librosa.stft</code></a> computes a STFT. We provide it a frame size, i.e. the size of the FFT, and a hop length, i.e. the frame increment:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[21]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">hop_length</span> <span class="o">=</span> <span class="mi">512</span>
<span class="n">n_fft</span> <span class="o">=</span> <span class="mi">2048</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">librosa</span><span class="o">.</span><span class="n">stft</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">n_fft</span><span class="o">=</span><span class="n">n_fft</span><span class="p">,</span> <span class="n">hop_length</span><span class="o">=</span><span class="n">hop_length</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>To convert the hop length and frame size to units of seconds:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[22]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="nb">float</span><span class="p">(</span><span class="n">hop_length</span><span class="p">)</span><span class="o">/</span><span class="n">sr</span> <span class="c1"># units of seconds</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[22]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>0.023219954648526078</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[23]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="nb">float</span><span class="p">(</span><span class="n">n_fft</span><span class="p">)</span><span class="o">/</span><span class="n">sr</span> <span class="c1"># units of seconds</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[23]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>0.09287981859410431</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>For real-valued signals, the Fourier transform is symmetric about the midpoint. Therefore, <code>librosa.stft</code> only retains one half of the output:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[24]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">X</span><span class="o">.</span><span class="n">shape</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[24]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>(1025, 166)</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>This STFT has 1025 frequency bins and 166 frames in time.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
......@@ -11864,17 +12041,214 @@ div#notebook {
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Musical signals are highly non-stationary, i.e., their statistics change over time. It would be rather meaningless to compute a single spectrum over an entire 10-minute song.</p>
<p>Instead, we compute a spectrum for small frames of the audio signal. The resulting sequence of spectra is called a <a href="https://en.wikipedia.org/wiki/Spectrogram"><em>spectrogram</em></a>.</p>
<p>In music processing, we often only care about the spectral magnitude and not the phase content.</p>
<p>The <strong>spectrogram</strong> (<a href="https://en.wikipedia.org/wiki/Spectrogram">Wikipedia</a>; FMP, p. 29, 55) shows the the intensity of frequencies over time. A spectrogram is simply the squared magnitude of the STFT:</p>
$$ S(m, \omega) = \left| X(m, \omega) \right|^2 $$
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The human perception of sound intensity is logarithmic in nature. Therefore, we are often interested in the log amplitude:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[25]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">S</span> <span class="o">=</span> <span class="nb">abs</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>To display any type of spectrogram in librosa, use <a href="http://bmcfee.github.io/librosa/generated/librosa.display.specshow.html"><code>librosa.display.specshow</code></a>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[26]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">librosa</span><span class="o">.</span><span class="n">display</span><span class="o">.</span><span class="n">specshow</span><span class="p">(</span><span class="n">S</span><span class="p">,</span> <span class="n">sr</span><span class="o">=</span><span class="n">sr</span><span class="p">,</span> <span class="n">x_axis</span><span class="o">=</span><span class="s1">&#39;time&#39;</span><span class="p">,</span> <span class="n">y_axis</span><span class="o">=</span><span class="s1">&#39;linear&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[26]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>&lt;matplotlib.axes._subplots.AxesSubplot at 0x10e0f3810&gt;</pre>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAGhBJREFUeJzt3WuMbVdhH/D/mfuwwS9ehpIAMZXLkvqhBBvqJNjYTU0d
Y1qn9EOtFmhI07TCfbihJQUZgao0Uihx27SmJG4JpGoUKaZENI2JJZI4xoCsJm6Ei1kF5GJeQdj4
+l7f98ycfpi5Zfbe586M1505Z+bM7/flnrXPOnPX2bPPnv0/ez1G4/E4AAAALRZm3QAAAGD3EigA
AIBmAgUAANBMoAAAAJoJFAAAQDOBAgAAaLZ/1g3YbqPRAfPiAgDAORiPT4/O9pw7FAAAQDOBAgAA
aCZQAAAAzQQKAACgmUABAAA0EygAAIBmAgUAANBMoAAAAJoJFAAAQDOBAgAAaCZQAAAAzQQKAACg
mUABAAA0EygAAIBmAgUAANBMoAAAAJoJFAAAQDOBAgAAaCZQAAAAzQQKAACgmUABAAA027+dP7yU
clWSX6i1XldKuTzJR5KMkzyc5NZa63Ip5b1JbkqymOS2WuuDz6TudrYfAABY37bdoSilvDPJf0py
/uqmO5LcXmu9Jskoyc2llCuSXJvkqiS3JLmzoS4AADAj29nl6StJ3rSmfGWS+1Yf35Pk+iRXJ7m3
1jqutT6WZH8p5dJnWBcAAJiRbQsUtdaPJTm9ZtOo1jpefXwkySVJLk7y1Jo6Z7Y/k7oAAMCMTHNQ
9vKaxxclOZTk8Orj/vZnUhcAAJiRaQaKh0op160+vjHJ/UkeSHJDKWWhlPKyJAu11sefYV0AAGBG
tnWWp553JLmrlHIwySNJ7q61LpVS7k/y2ayEm1sb6gIAADMyGo/HG9faxUajA/P9BgEAYJuNx6dH
Z3vOwnYAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIA
AGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAA
oJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACA
ZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACa
CRQAAECz/dP8z0opB5J8NMllSZaS/L0ki0k+kmSc5OEkt9Zal0sp701y0+rzt9VaHyylXD6p7jTf
AwAA8D3TvkPxhiT7a60/kuRfJvlXSe5Icnut9ZokoyQ3l1KuSHJtkquS3JLkztXXD+pOuf0AAMAa
0w4U/yfJ/lLKQpKLk5xOcmWS+1afvyfJ9UmuTnJvrXVca31s9TWXnqUuAAAwI1Pt8pTk6ax0d/pi
khckeWOS19Vax6vPH0lySVbCxhNrXndm+2hCXQAAYEamfYfinyb53VrrK5K8MivjKQ6uef6iJIeS
HF593N++PGEbAAAwI9MOFE8meWr18XeTHEjyUCnlutVtNya5P8kDSW4opSyUUl6WZKHW+vhZ6gIA
ADMy7S5P/ybJh0sp92flzsS7k/zPJHeVUg4meSTJ3bXWpdU6n81K6Ll19fXv6NedcvsBAIA1RuPx
eONau9hodGC+3yAAAGyz8fj06GzPWdgOAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0Eyg
AAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4EC
AABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoA
AKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAA
gGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADN9k/7PyylvCvJX0tyMMkHk9yX5CNJxkkeTnJr
rXW5lPLeJDclWUxyW631wVLK5ZPqTvs9AAAAK6Z6h6KUcl2SH0ny2iTXJnlpkjuS3F5rvSbJKMnN
pZQrVp+/KsktSe5c/RGDutNsPwAA0DXtLk83JPl8ko8n+e9JfjvJlVm5S5Ek9yS5PsnVSe6ttY5r
rY8l2V9KufQsdQEAgBmZdpenFyT5gSRvTPLyJJ9IslBrHa8+fyTJJUkuTvLEmted2T6aUBcAAJiR
aQeKJ5J8sdZ6KkktpZzISrenMy5KcijJ4dXH/e3LE7YBAAAzMu0uT59O8mOllFEp5fuSXJDkU6tj
K5LkxiT3J3kgyQ2llIVSysuychfj8SQPTagLAADMyFTvUNRaf7uU8rokD2YlzNya5NEkd5VSDiZ5
JMndtdalUsr9ST67pl6SvKNfd5rtBwAAukbj8XjjWrvYaHRgvt8gAABss/H49Ohsz1nYDgAAaCZQ
AAAAzZoDRSnl5VvZEAAAYPfZVKAopRwupfyN3uaPbUN7AACAXWSzdygeT/IzpZSfX7PtrAMzAACA
vWGzgeJQkr+U5CWllN8ppVySZGn7mgUAAOwGmw0Uo1rrqVrrW5P8XpLPJXnO9jULAADYDTYbKO45
86DW+oEktyVZ3JYWAQAAu8a6C9uVUpaTjLMyXmJtxVGSca113/Y279xZ2A4AAM7NegvbbXql7FLK
Q7XWV21Zq6ZEoAAAgHOzVStluzAHAAA6nkmgME0sAADQ4Q4FAADQbKNB2Y/me0Hi+5N848zrsjIo
+89ub/POnTEUAABwbtYbQ7F/g9det7VNAQAA5smmZ3nardyhAACAc7NVszwBAAB0CBQAAEAzgQIA
AGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAA
oJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACA
ZgIFAADQTKAAAACa7Z/Ff1pKeWGSP0ry+iSLST6SZJzk4SS31lqXSynvTXLT6vO31VofLKVcPqnu
9N8BAACQzOAORSnlQJJfTnJ8ddMdSW6vtV6TZJTk5lLKFUmuTXJVkluS3Hm2utNsOwAA0DWLLk8f
SPKhJN9cLV+Z5L7Vx/ckuT7J1UnurbWOa62PJdlfSrn0LHUBAIAZmWqgKKX8RJLv1Fp/d83mUa11
vPr4SJJLklyc5Kk1dc5sn1QXAACYkWmPofjJJONSyvVJfjDJryV54ZrnL0pyKMnh1cf97csTtgEA
ADMy1TsUtdbX1VqvrbVel+R/JXlrkntKKdetVrkxyf1JHkhyQylloZTysiQLtdbHkzw0oS4AADAj
M5nlqecdSe4qpRxM8kiSu2utS6WU+5N8Niuh59az1Z1FgwEAgBWj8Xi8ca1dbDQ6MN9vEAAAttl4
fHp0tucsbAcAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQT
KAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0Eyg
AAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4EC
AABoJlAAAADNBAoAAKCZQAEAADTbP+sGTNsoo96GXnk8nlpbxpne/wUw73bK+d25ne02ONYTxzsz
tecCxeDAn2KAAGD7OL+zV0y8iHe8M0O6PAEAAM0ECgAAoJlAAQAANBMoAACAZntuUDbTM2kWCrNB
AADMF4GCbSM8AADMv6kGilLKgSQfTnJZkvOS/FySLyT5SJJxkoeT3FprXS6lvDfJTUkWk9xWa32w
lHL5pLrTfA8AAMD3THsMxZuTPFFrvSbJjUn+Q5I7kty+um2U5OZSyhVJrk1yVZJbkty5+vpB3Sm3
HwAAWGPageI3k7xnTXkxyZVJ7lst35Pk+iRXJ7m31jqutT6WZH8p5dKz1AUAAGZkql2eaq1PJ0kp
5aIkdye5PckHaq1nOtsfSXJJkouTPLHmpWe2jybUBQAAZmTqg7JLKS9N8vEkH6y1/nop5f1rnr4o
yaEkh1cf97cvT9g2t0aj4Q2kUfb1NmziJtP4mQ8zGQ6o3sTPGG88CNtA7e0zaVat0aj3EZ/a8TJJ
7+du4nhp+39mY7CvM+F34vMKwBya9qDsFyW5N8k/rLV+anXzQ6WU62qtf5CVcRW/n+TLSd5fSvlA
kpckWai1Pl5KmVR3bo0nXFiMBxdlU2oMO96ki7/x+HS/EttkPF4cbttwAwDsftO+Q/HuJM9N8p5S
ypmxFP8kyS+VUg4meSTJ3bXWpVLK/Uk+m5VxHreu1n1HkrvW1p1q6wEAgI7RuKHbwW4yGh2Y7zcI
AADbbDw+PexbvWraszwBAABzxErZbJtJg8r7A0EN+gQA2N3mPlBMmvlmLRe022fSoHKArbDRuT1x
fmd+TTr+He/M0twHCh8wgPnj3M5e5vhnp5n7QAEAbK2F0YHBttHCsxp+0tK6z06+092fPn3SFOsb
XXBvzVotz/z/hfkkUAAAz8hyf42bJFmasA3YEwSKHWxhwrc95x14fqc8WOguydLSiU55eXyy+5oJ
C3D1v+HZ1Mq7BljvKJNWaj544AWd8kKvztJy91hZ2XaqUx4ujjdpATfHy759Fw+2nXfgOZ1yf99O
2v/9/e3zCsBOZx0KAABgXdahAAAAtoVAAQAANJv7MRT79l3QKS8vnzxLzVXj9WecSPQ9Bpi1ietQ
jPZt8CpjS9idBsf7hsd64nhnmoyhAAAA1rXeGIq5v0PB9IxG3R50zzrvJYM6Fxx8Yae8f+G8QZ2T
S4c75VOLRzvlxQkz4yz3Zs9Z7s2MM5ipKBPmN2+dvWj4gzeus+H/A7BzTZqF8MD+S9Z9zaRZzYa9
BlrWmHjm52XnXNha7lAAAADrMssTAACwLXR5AtgCkwYJ61YBwF4gUOxg+/c/Z7Bt38L5nXJLn9Tx
JmayGvZjNS5gp9tMn+bhWJPhrGcbjS2Z/Hvde2NL+mOGDux/wVlqfs/yuLf/J846t5nP6wb7e4u6
su7k/Q/AzmEMBQAAsK49PctTvxuCb9wAAGDrzH2g2Nfr8vHii67slJ+X7tSmpzPsgnAsT3bLy4cG
dU4vPd0rH++UJ0912p/atFteWu7+jJU6velPJ3SHEJqAeddftDRJvu/iH+qU++f3pQynhj7aO78f
X+6WTy13z+3JxlNZ98/tyfD83p/a+kwLu6/pd22btFBZr4vcNk117e/KbPW7tP6Zi18zqHPp6OWd
8maO9xPjpzrl/rTtyfB4X+p1ne2Xk80c7xOuXXbQ8T54ieN/Q3Pf5Wlh4bzOGxwesADAevp3+0e9
8XxJMu6NyRpl49Wcp3VBuBkuGmF963V5mvtAYQwFAACcmz09hoLZMY0mAMD8EyjYNpPCQ8sg+UEw
GW18G31ztqn724zu+glrAMAsCBRsmeGF/4Q7Y1sxGGriYEYAAGZBoGDr9APEhPDgW3TmlS5+AOxV
AsUOttsuUMygNVu77XiZN/Y1AHvV3AeKhYXzOuX+Og47+iJ4wliBUW/dCRcx/H+TjpdeuT83OO0G
02iOhqfT/v72ed06kwJ0n/3NvHC8s9PNfaAYLIKykwNEj4s/ngnHy3T1/3gPFp1k6lxQTc9otDDY
tpv+vu52jnV2mrkPFAu91VTHvVUgnQABdqEJkz6M+vM3uOhiXvSO94ldXF3PMENzv7Ddwuhgd6Vs
f2AA4JwYswV7z55e2M4JDgC2lr+twFrDTpAAAACbNPd3KJie4SC9SYP2DBwGAJgnAsUOtttm0di/
7zmd8lsuffugzq3lqU75woOnBnW+9XR3IP3/PfqsTvmbJ4b75VvHuuUnTnan1z18ehhkji13Z+U5
Njo+qHO8t+3o6FCnfHL89OA1p5eP9crdn7G0fHLwmsXetuVe8OqXk2R5ubvvTi8eGtQZ9aaSHcxE
ZPHBZsOV4YfT9grQAOwFBmXvIAujA53yW1/0s4M6//n2b3XK4zffNOEHdS+4F77wxU55+TPdcpIc
e7h7Qfutr1/cKX/tyEWD1zx2rLvGxyOHu//v5747vMD98uiPO+UnjtZBncXFbugwl//m/Pnn3jLY
dt9f6X5n8Lx//Zc75fELLh28ZuGrX+1u+MznO8UTfzL8vT7+6LM75ceevGRQ5+vHzu+Uv3OyewH+
3VPDsV6He/nnqVPd3/2hXnBMkiNL3Rc9PT4xqHNs4WinfCL98jAo9sPjwVE36P6z73/N4DVv//lu
6Fv+0au7FU4M27bwJw93yksPPjqoc+Th7vv+1re7+/uxIxcOXvON4wc75SdPdz+vhybt//7+PjX8
QuOpU93P59O9oPv0qJf2kxzvbTs+6s6+NymoH1t8oltn8fCgzlLv/z61+GSnPF4efoHh/MJuYB0K
doL1BmXPfaA4+c/f0nmDX3roeZ3nP/nN53fKN7z4u4OfcXq5+4f3a0efPajz1WPdP9ZHehdCx5eG
v4Mjp9ff9/cf+fpg25dO3Ncpn1qc8A35Yu89WAxvT5h0R6t/B8Lvfuu4QzFbL3vu6wfb3v/yV3fK
XzveDdTXXtr9siJJDu7rnh+/cbR7h/TR3rk9SQ73/qYeW+yWn14cfs6eONENY0+fHobhY8vd4+XE
uB/OusE3SY6NjnTKp0fdL4dOjYeB7nRvW/8OaZIsjbvbjp96clCnrx/glpa67d1td913khc/57Wd
8vsvu3ZQ5zunuuegv/i84fXBJed1f69f7/UIePRo94vCJDm0wfF+bNLxfrL7ez3SO96PLg3Pjf3j
/eiEXgP94/1Ur86k432xdyz3exH0j/UkWex9+bC8PFxnaKOeBMvLk87/66+NNs7w8zD8jAzPHRt/
jiY83/DZW1o+tncDxcLCef3Vp7pFF1gAu46L0+nq30F/9vkvHdQ5furbnfL5B7t3QE+c+s7gNaPe
z12eEG6Ger/nTfze2/7Wb9Hx1HCd1W/vwkLvQn/Ce162uCbbbE/foVhYeFa3y5NvDAHgnAh0sPfs
7XUoBAgA2FLCA7CWdSgAAIBmu+4ORSllIckHk7wyyckkP1Vr/fJsWwUAAHvTbrxD8eNJzq+1/nCS
f5HkF2fcHgAA2LN2Y6C4Osknk6TW+rkkr16/OgAAsF12Y6C4OMnaycSXSim7rusWAADMg914IX44
ydplmxdqrWedymm9Ka4AAIBzsxvvUDyQ5A1JUkr5oSSfn21zAABg79qNdyg+nuT1pZTPJBkleduM
2wMAAHvW3K+UDQAAbJ/d2OUJAADYIQQKAACgmUABAAA0242DsjdUSllI8sEkr0xyMslP1Vq/PNtW
zZ+N9nMp5ZeSvDbJkdVNN9danxr8ILZEKeWqJL9Qa71u1m2ZZ2fbz6WUn0nyd5N8Z3XT36+11ik3
b08opRxI8uEklyU5L8nP1Vo/MdNGzaGN9rNjfjpKKfuS3JWkJFlK8rZa61dm26r5s9F+dryvby4D
RZIfT3J+rfWHV6eW/cUkN8+4TfNoo/18RZIbaq2Pz6R1e0gp5Z1J3pLk6KzbMs822M9XJHlrrfWP
ptuqPenNSZ6otb6llPL8JA8lESi23kb72TE/HX81SWqtry2lXJfkjrim2Q4b7WfH+zrmtcvT1Uk+
mSS11s8lefVsmzO3zrqfV+9e/Lkkv1JKeaCU8pOzaeKe8ZUkb5p1I/aA9fbzlUneVUr5dCnlXVNs
0170m0nes6Z81sVNOScb7WfH/BTUWn8ryU+vFn8gybdn2Jy5tYn97Hhfx7wGiouTrO1as1RKmde7
MbO03n6+IMm/z8o3XD+W5O2llL8w5fbtGbXWjyU5Pet2zLsN9vNvJPkHSX40ydWllDdOrWF7TK31
6VrrkVLKRUnuTnL7rNs0jzaxnx3zU1JrXSylfDQrf1fvnnV75tUG+9nxvo55DRSHk1y0prxQa/UN
1tZbbz8fS/Lvaq3Haq1HkvxeVsZawNwppYyS/Nta6+O11lNJ/keSV824WXOtlPLSJL+f5L/UWn99
1u2ZV2fbz4756au1/p0kr0hyVynlglm3Z15N2s+O943Na6B4IMkbkmS1b//nZ9ucubXefn5Fkk+X
UvatDuy7OskfT7+JMBUXJ3m4lHLh6h+eH02in+02KaW8KMm9SX621vrhWbdnXm2wnx3zU1JKecua
LjbHkixnZdAwW2iD/ex438C8dgP6eJLXl1I+k2SU5G0zbs+8Guzn1VkQvlxr/UQp5b8m+VxWuoj8
Wq31f8+wrbDlSil/K8mFtdZfKaW8Oyvf5J5M8qla6+/MtnVz7d1JnpvkPaWUM338b6y1Hp9hm+bR
pP18V5ILHPNT9d+S/Gop5Q+THEhyW631xIzbNI8G+znJm0opzvGbMBqPx7NuAwAAsEvNa5cnAABg
CgQKAACgmUABAAA0EygAAIBmAgUAANBsXqeNBWBGSil3JnltkoNJLk/yhdWnfjnJuNb6oVm1DYCt
Z9pYALZFKeWyJH9Qa71sxk0BYBu5QwHAVJRS3pcktdb3lVL+NMlvJbkqyZ8m+XCSf5zkJUl+otZ6
Xynl8iT/Mcnzs7Jy7T+qtT40i7YDcHbGUAAwCy9Kck+t9VVJzk/y12ut1yR5X1ZWqE2SjyZ5Z631
iiQ/neQ3ZtFQANbnDgUAs3LP6r9fTfLpNY+fW0q5MMlrkvxqKeVM/QtLKc+vtT4x3WYCsB6BAoCZ
qLWeWlNc7D29L8mJWusPntlQSnlJku9Oo20AbJ4uTwDsOLXWp5J8qZTy5iQppbw+yR/OtlUATOIO
BQA71d9O8qFSyjuTnEryN2utpiYE2GFMGwsAADTT5QkAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACA
ZgIFAADQTKAAAACaCRQAAECz/wcS9nYb202fEAAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="librosa.feature.melspectrogram"><code>librosa.feature.melspectrogram</code><a class="anchor-link" href="#librosa.feature.melspectrogram">&#194;&#182;</a></h3>
<h2 id="Mel-spectrogram">Mel-spectrogram<a class="anchor-link" href="#Mel-spectrogram">&#194;&#182;</a></h2>
</div>
</div>
</div>
......
......@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"metadata": {
"collapsed": true,
"slideshow": {
......@@ -40,6 +40,29 @@
"# Short-Time Fourier Transform"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Musical signals are highly non-stationary, i.e., their statistics change over time. It would be rather meaningless to compute a single Fourier transform over an entire 10-minute song."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The **short-time Fourier transform (STFT)** ([Wikipedia](https://en.wikipedia.org/wiki/Short-time_Fourier_transform); FMP, p. 53) is obtained by computing the Fourier transform for successive frames in a signal. \n",
"\n",
"$$ X(m, \\omega) = \\sum_n x(n) w(n-m) e^{-j \\omega n} $$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we increase $m$, we slide the window function $w$ to the right. For the resulting frame, $x(n) w(n-m)$, we compute the Fourier transform. Therefore, the STFT $X$ is a function of both time, $m$, and frequency, $\\omega$."
]
},
{
"cell_type": "markdown",
"metadata": {
......@@ -48,12 +71,12 @@
}
},
"source": [
"Let's listen to a file:"
"Let's load a file:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 20,
"metadata": {
"slideshow": {
"slide_type": "subslide"
......@@ -74,7 +97,7 @@
"<IPython.lib.display.Audio object>"
]
},
"execution_count": 2,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
......@@ -84,6 +107,105 @@
"ipd.Audio(x, rate=sr)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[`librosa.stft`](https://librosa.github.io/librosa/generated/librosa.core.stft.html#librosa.core.stft) computes a STFT. We provide it a frame size, i.e. the size of the FFT, and a hop length, i.e. the frame increment:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"hop_length = 512\n",
"n_fft = 2048\n",
"X = librosa.stft(x, n_fft=n_fft, hop_length=hop_length)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To convert the hop length and frame size to units of seconds:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.023219954648526078"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"float(hop_length)/sr # units of seconds"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.09287981859410431"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"float(n_fft)/sr # units of seconds"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For real-valued signals, the Fourier transform is symmetric about the midpoint. Therefore, `librosa.stft` only retains one half of the output:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1025, 166)"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This STFT has 1025 frequency bins and 166 frames in time."
]
},
{
"cell_type": "markdown",
"metadata": {
......@@ -103,20 +225,88 @@
}
},
"source": [
"Musical signals are highly non-stationary, i.e., their statistics change over time. It would be rather meaningless to compute a single spectrum over an entire 10-minute song.\n",
"In music processing, we often only care about the spectral magnitude and not the phase content.\n",
"\n",
"The **spectrogram** ([Wikipedia](https://en.wikipedia.org/wiki/Spectrogram); FMP, p. 29, 55) shows the the intensity of frequencies over time. A spectrogram is simply the squared magnitude of the STFT:\n",
"\n",
"Instead, we compute a spectrum for small frames of the audio signal. The resulting sequence of spectra is called a [*spectrogram*](https://en.wikipedia.org/wiki/Spectrogram)."
"$$ S(m, \\omega) = \\left| X(m, \\omega) \\right|^2 $$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The human perception of sound intensity is logarithmic in nature. Therefore, we are often interested in the log amplitude:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"### `librosa.feature.melspectrogram`"
"S = abs(X)**2"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"To display any type of spectrogram in librosa, use [`librosa.display.specshow`](http://bmcfee.github.io/librosa/generated/librosa.display.specshow.html)."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x10e0f3810>"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAAE8CAYAAABZ4/fjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGhBJREFUeJzt3WuMbVdhH/D/mfuwwS9ehpIAMZXLkvqhBBvqJNjYTU0d\nY1qn9EOtFmhI07TCfbihJQUZgao0Uihx27SmJG4JpGoUKaZENI2JJZI4xoCsJm6Ei1kF5GJeQdj4\n+l7f98ycfpi5Zfbe586M1505Z+bM7/flnrXPOnPX2bPPnv0/ez1G4/E4AAAALRZm3QAAAGD3EigA\nAIBmAgUAANBMoAAAAJoJFAAAQDOBAgAAaLZ/1g3YbqPRAfPiAgDAORiPT4/O9pw7FAAAQDOBAgAA\naCZQAAAAzQQKAACgmUABAAA0EygAAIBmAgUAANBMoAAAAJoJFAAAQDOBAgAAaCZQAAAAzQQKAACg\nmUABAAA0EygAAIBmAgUAANBMoAAAAJoJFAAAQDOBAgAAaCZQAAAAzQQKAACgmUABAAA027+dP7yU\nclWSX6i1XldKuTzJR5KMkzyc5NZa63Ip5b1JbkqymOS2WuuDz6TudrYfAABY37bdoSilvDPJf0py\n/uqmO5LcXmu9Jskoyc2llCuSXJvkqiS3JLmzoS4AADAj29nl6StJ3rSmfGWS+1Yf35Pk+iRXJ7m3\n1jqutT6WZH8p5dJnWBcAAJiRbQsUtdaPJTm9ZtOo1jpefXwkySVJLk7y1Jo6Z7Y/k7oAAMCMTHNQ\n9vKaxxclOZTk8Orj/vZnUhcAAJiRaQaKh0op160+vjHJ/UkeSHJDKWWhlPKyJAu11sefYV0AAGBG\ntnWWp553JLmrlHIwySNJ7q61LpVS7k/y2ayEm1sb6gIAADMyGo/HG9faxUajA/P9BgEAYJuNx6dH\nZ3vOwnYAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIA\nAGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAA\noJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACA\nZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACa\nCRQAAECz/dP8z0opB5J8NMllSZaS/L0ki0k+kmSc5OEkt9Zal0sp701y0+rzt9VaHyylXD6p7jTf\nAwAA8D3TvkPxhiT7a60/kuRfJvlXSe5Icnut9ZokoyQ3l1KuSHJtkquS3JLkztXXD+pOuf0AAMAa\n0w4U/yfJ/lLKQpKLk5xOcmWS+1afvyfJ9UmuTnJvrXVca31s9TWXnqUuAAAwI1Pt8pTk6ax0d/pi\nkhckeWOS19Vax6vPH0lySVbCxhNrXndm+2hCXQAAYEamfYfinyb53VrrK5K8MivjKQ6uef6iJIeS\nHF593N++PGEbAAAwI9MOFE8meWr18XeTHEjyUCnlutVtNya5P8kDSW4opSyUUl6WZKHW+vhZ6gIA\nADMy7S5P/ybJh0sp92flzsS7k/zPJHeVUg4meSTJ3bXWpdU6n81K6Ll19fXv6NedcvsBAIA1RuPx\neONau9hodGC+3yAAAGyz8fj06GzPWdgOAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0Eyg\nAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4EC\nAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoA\nAKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAA\ngGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADN9k/7PyylvCvJX0tyMMkHk9yX5CNJxkkeTnJr\nrXW5lPLeJDclWUxyW631wVLK5ZPqTvs9AAAAK6Z6h6KUcl2SH0ny2iTXJnlpkjuS3F5rvSbJKMnN\npZQrVp+/KsktSe5c/RGDutNsPwAA0DXtLk83JPl8ko8n+e9JfjvJlVm5S5Ek9yS5PsnVSe6ttY5r\nrY8l2V9KufQsdQEAgBmZdpenFyT5gSRvTPLyJJ9IslBrHa8+fyTJJUkuTvLEmted2T6aUBcAAJiR\naQeKJ5J8sdZ6KkktpZzISrenMy5KcijJ4dXH/e3LE7YBAAAzMu0uT59O8mOllFEp5fuSXJDkU6tj\nK5LkxiT3J3kgyQ2llIVSysuychfj8SQPTagLAADMyFTvUNRaf7uU8rokD2YlzNya5NEkd5VSDiZ5\nJMndtdalUsr9ST67pl6SvKNfd5rtBwAAukbj8XjjWrvYaHRgvt8gAABss/H49Ohsz1nYDgAAaCZQ\nAAAAzZoDRSnl5VvZEAAAYPfZVKAopRwupfyN3uaPbUN7AACAXWSzdygeT/IzpZSfX7PtrAMzAACA\nvWGzgeJQkr+U5CWllN8ppVySZGn7mgUAAOwGmw0Uo1rrqVrrW5P8XpLPJXnO9jULAADYDTYbKO45\n86DW+oEktyVZ3JYWAQAAu8a6C9uVUpaTjLMyXmJtxVGSca113/Y279xZ2A4AAM7NegvbbXql7FLK\nQ7XWV21Zq6ZEoAAAgHOzVStluzAHAAA6nkmgME0sAADQ4Q4FAADQbKNB2Y/me0Hi+5N848zrsjIo\n+89ub/POnTEUAABwbtYbQ7F/g9det7VNAQAA5smmZ3nardyhAACAc7NVszwBAAB0CBQAAEAzgQIA\nAGgmUAAAAM0ECgAAoJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAA\noJlAAQAANBMoAACAZgIFAADQTKAAAACaCRQAAEAzgQIAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACA\nZgIFAADQTKAAAACa7Z/Ff1pKeWGSP0ry+iSLST6SZJzk4SS31lqXSynvTXLT6vO31VofLKVcPqnu\n9N8BAACQzOAORSnlQJJfTnJ8ddMdSW6vtV6TZJTk5lLKFUmuTXJVkluS3Hm2utNsOwAA0DWLLk8f\nSPKhJN9cLV+Z5L7Vx/ckuT7J1UnurbWOa62PJdlfSrn0LHUBAIAZmWqgKKX8RJLv1Fp/d83mUa11\nvPr4SJJLklyc5Kk1dc5sn1QXAACYkWmPofjJJONSyvVJfjDJryV54ZrnL0pyKMnh1cf97csTtgEA\nADMy1TsUtdbX1VqvrbVel+R/JXlrkntKKdetVrkxyf1JHkhyQylloZTysiQLtdbHkzw0oS4AADAj\nM5nlqecdSe4qpRxM8kiSu2utS6WU+5N8Niuh59az1Z1FgwEAgBWj8Xi8ca1dbDQ6MN9vEAAAttl4\nfHp0tucsbAcAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQT\nKAAAgGYCBQAA0EygAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0Eyg\nAAAAmgkUAABAM4ECAABoJlAAAADNBAoAAKCZQAEAADQTKAAAgGYCBQAA0EygAAAAmgkUAABAM4EC\nAABoJlAAAADNBAoAAKCZQAEAADTbP+sGTNsoo96GXnk8nlpbxpne/wUw73bK+d25ne02ONYTxzsz\ntecCxeDAn2KAAGD7OL+zV0y8iHe8M0O6PAEAAM0ECgAAoJlAAQAANBMoAACAZntuUDbTM2kWCrNB\nAADMF4GCbSM8AADMv6kGilLKgSQfTnJZkvOS/FySLyT5SJJxkoeT3FprXS6lvDfJTUkWk9xWa32w\nlHL5pLrTfA8AAMD3THsMxZuTPFFrvSbJjUn+Q5I7kty+um2U5OZSyhVJrk1yVZJbkty5+vpB3Sm3\nHwAAWGPageI3k7xnTXkxyZVJ7lst35Pk+iRXJ7m31jqutT6WZH8p5dKz1AUAAGZkql2eaq1PJ0kp\n5aIkdye5PckHaq1nOtsfSXJJkouTPLHmpWe2jybUBQAAZmTqg7JLKS9N8vEkH6y1/nop5f1rnr4o\nyaEkh1cf97cvT9g2t0aj4Q2kUfb1NmziJtP4mQ8zGQ6o3sTPGG88CNtA7e0zaVat0aj3EZ/a8TJJ\n7+du4nhp+39mY7CvM+F34vMKwBya9qDsFyW5N8k/rLV+anXzQ6WU62qtf5CVcRW/n+TLSd5fSvlA\nkpckWai1Pl5KmVR3bo0nXFiMBxdlU2oMO96ki7/x+HS/EttkPF4cbttwAwDsftO+Q/HuJM9N8p5S\nypmxFP8kyS+VUg4meSTJ3bXWpVLK/Uk+m5VxHreu1n1HkrvW1p1q6wEAgI7RuKHbwW4yGh2Y7zcI\nAADbbDw+PexbvWraszwBAABzxErZbJtJg8r7A0EN+gQA2N3mPlBMmvlmLRe022fSoHKArbDRuT1x\nfmd+TTr+He/M0twHCh8wgPnj3M5e5vhnp5n7QAEAbK2F0YHBttHCsxp+0tK6z06+092fPn3SFOsb\nXXBvzVotz/z/hfkkUAAAz8hyf42bJFmasA3YEwSKHWxhwrc95x14fqc8WOguydLSiU55eXyy+5oJ\nC3D1v+HZ1Mq7BljvKJNWaj544AWd8kKvztJy91hZ2XaqUx4ujjdpATfHy759Fw+2nXfgOZ1yf99O\n2v/9/e3zCsBOZx0KAABgXdahAAAAtoVAAQAANJv7MRT79l3QKS8vnzxLzVXj9WecSPQ9Bpi1ietQ\njPZt8CpjS9idBsf7hsd64nhnmoyhAAAA1rXeGIq5v0PB9IxG3R50zzrvJYM6Fxx8Yae8f+G8QZ2T\nS4c75VOLRzvlxQkz4yz3Zs9Z7s2MM5ipKBPmN2+dvWj4gzeus+H/A7BzTZqF8MD+S9Z9zaRZzYa9\nBlrWmHjm52XnXNha7lAAAADrMssTAACwLXR5AtgCkwYJ61YBwF4gUOxg+/c/Z7Bt38L5nXJLn9Tx\nJmayGvZjNS5gp9tMn+bhWJPhrGcbjS2Z/Hvde2NL+mOGDux/wVlqfs/yuLf/J846t5nP6wb7e4u6\nsu7k/Q/AzmEMBQAAsK49PctTvxuCb9wAAGDrzH2g2Nfr8vHii67slJ+X7tSmpzPsgnAsT3bLy4cG\ndU4vPd0rH++UJ0912p/atFteWu7+jJU6velPJ3SHEJqAeddftDRJvu/iH+qU++f3pQynhj7aO78f\nX+6WTy13z+3JxlNZ98/tyfD83p/a+kwLu6/pd22btFBZr4vcNk117e/KbPW7tP6Zi18zqHPp6OWd\n8maO9xPjpzrl/rTtyfB4X+p1ne2Xk80c7xOuXXbQ8T54ieN/Q3Pf5Wlh4bzOGxwesADAevp3+0e9\n8XxJMu6NyRpl49Wcp3VBuBkuGmF963V5mvtAYQwFAACcmz09hoLZMY0mAMD8EyjYNpPCQ8sg+UEw\nGW18G31ztqn724zu+glrAMAsCBRsmeGF/4Q7Y1sxGGriYEYAAGZBoGDr9APEhPDgW3TmlS5+AOxV\nAsUOttsuUMygNVu77XiZN/Y1AHvV3AeKhYXzOuX+Og47+iJ4wliBUW/dCRcx/H+TjpdeuT83OO0G\n02iOhqfT/v72ed06kwJ0n/3NvHC8s9PNfaAYLIKykwNEj4s/ngnHy3T1/3gPFp1k6lxQTc9otDDY\ntpv+vu52jnV2mrkPFAu91VTHvVUgnQABdqEJkz6M+vM3uOhiXvSO94ldXF3PMENzv7Ddwuhgd6Vs\nf2AA4JwYswV7z55e2M4JDgC2lr+twFrDTpAAAACbNPd3KJie4SC9SYP2DBwGAJgnAsUOtttm0di/\n7zmd8lsuffugzq3lqU75woOnBnW+9XR3IP3/PfqsTvmbJ4b75VvHuuUnTnan1z18ehhkji13Z+U5\nNjo+qHO8t+3o6FCnfHL89OA1p5eP9crdn7G0fHLwmsXetuVe8OqXk2R5ubvvTi8eGtQZ9aaSHcxE\nZPHBZsOV4YfT9grQAOwFBmXvIAujA53yW1/0s4M6//n2b3XK4zffNOEHdS+4F77wxU55+TPdcpIc\ne7h7Qfutr1/cKX/tyEWD1zx2rLvGxyOHu//v5747vMD98uiPO+UnjtZBncXFbugwl//m/Pnn3jLY\ndt9f6X5n8Lx//Zc75fELLh28ZuGrX+1u+MznO8UTfzL8vT7+6LM75ceevGRQ5+vHzu+Uv3OyewH+\n3VPDsV6He/nnqVPd3/2hXnBMkiNL3Rc9PT4xqHNs4WinfCL98jAo9sPjwVE36P6z73/N4DVv//lu\n6Fv+0au7FU4M27bwJw93yksPPjqoc+Th7vv+1re7+/uxIxcOXvON4wc75SdPdz+vhybt//7+PjX8\nQuOpU93P59O9oPv0qJf2kxzvbTs+6s6+NymoH1t8oltn8fCgzlLv/z61+GSnPF4efoHh/MJuYB0K\ndoL1BmXPfaA4+c/f0nmDX3roeZ3nP/nN53fKN7z4u4OfcXq5+4f3a0efPajz1WPdP9ZHehdCx5eG\nv4Mjp9ff9/cf+fpg25dO3Ncpn1qc8A35Yu89WAxvT5h0R6t/B8Lvfuu4QzFbL3vu6wfb3v/yV3fK\nXzveDdTXXtr9siJJDu7rnh+/cbR7h/TR3rk9SQ73/qYeW+yWn14cfs6eONENY0+fHobhY8vd4+XE\nuB/OusE3SY6NjnTKp0fdL4dOjYeB7nRvW/8OaZIsjbvbjp96clCnrx/glpa67d1td913khc/57Wd\n8vsvu3ZQ5zunuuegv/i84fXBJed1f69f7/UIePRo94vCJDm0wfF+bNLxfrL7ez3SO96PLg3Pjf3j\n/eiEXgP94/1Ur86k432xdyz3exH0j/UkWex9+bC8PFxnaKOeBMvLk87/66+NNs7w8zD8jAzPHRt/\njiY83/DZW1o+tncDxcLCef3Vp7pFF1gAu46L0+nq30F/9vkvHdQ5furbnfL5B7t3QE+c+s7gNaPe\nz12eEG6Ger/nTfze2/7Wb9Hx1HCd1W/vwkLvQn/Ce162uCbbbE/foVhYeFa3y5NvDAHgnAh0sPfs\n7XUoBAgA2FLCA7CWdSgAAIBmu+4ORSllIckHk7wyyckkP1Vr/fJsWwUAAHvTbrxD8eNJzq+1/nCS\nf5HkF2fcHgAA2LN2Y6C4Osknk6TW+rkkr16/OgAAsF12Y6C4OMnaycSXSim7rusWAADMg914IX44\nydplmxdqrWedymm9Ka4AAIBzsxvvUDyQ5A1JUkr5oSSfn21zAABg79qNdyg+nuT1pZTPJBkleduM\n2wMAAHvW3K+UDQAAbJ/d2OUJAADYIQQKAACgmUABAAA0242DsjdUSllI8sEkr0xyMslP1Vq/PNtW\nzZ+N9nMp5ZeSvDbJkdVNN9danxr8ILZEKeWqJL9Qa71u1m2ZZ2fbz6WUn0nyd5N8Z3XT36+11ik3\nb08opRxI8uEklyU5L8nP1Vo/MdNGzaGN9rNjfjpKKfuS3JWkJFlK8rZa61dm26r5s9F+dryvby4D\nRZIfT3J+rfWHV6eW/cUkN8+4TfNoo/18RZIbaq2Pz6R1e0gp5Z1J3pLk6KzbMs822M9XJHlrrfWP\nptuqPenNSZ6otb6llPL8JA8lESi23kb72TE/HX81SWqtry2lXJfkjrim2Q4b7WfH+zrmtcvT1Uk+\nmSS11s8lefVsmzO3zrqfV+9e/Lkkv1JKeaCU8pOzaeKe8ZUkb5p1I/aA9fbzlUneVUr5dCnlXVNs\n0170m0nes6Z81sVNOScb7WfH/BTUWn8ryU+vFn8gybdn2Jy5tYn97Hhfx7wGiouTrO1as1RKmde7\nMbO03n6+IMm/z8o3XD+W5O2llL8w5fbtGbXWjyU5Pet2zLsN9vNvJPkHSX40ydWllDdOrWF7TK31\n6VrrkVLKRUnuTnL7rNs0jzaxnx3zU1JrXSylfDQrf1fvnnV75tUG+9nxvo55DRSHk1y0prxQa/UN\n1tZbbz8fS/Lvaq3Haq1HkvxeVsZawNwppYyS/Nta6+O11lNJ/keSV824WXOtlPLSJL+f5L/UWn99\n1u2ZV2fbz4756au1/p0kr0hyVynlglm3Z15N2s+O943Na6B4IMkbkmS1b//nZ9ucubXefn5Fkk+X\nUvatDuy7OskfT7+JMBUXJ3m4lHLh6h+eH02in+02KaW8KMm9SX621vrhWbdnXm2wnx3zU1JKecua\nLjbHkixnZdAwW2iD/ex438C8dgP6eJLXl1I+k2SU5G0zbs+8Guzn1VkQvlxr/UQp5b8m+VxWuoj8\nWq31f8+wrbDlSil/K8mFtdZfKaW8Oyvf5J5M8qla6+/MtnVz7d1JnpvkPaWUM338b6y1Hp9hm+bR\npP18V5ILHPNT9d+S/Gop5Q+THEhyW631xIzbNI8G+znJm0opzvGbMBqPx7NuAwAAsEvNa5cnAABg\nCgQKAACgmUABAAA0EygAAIBmAgUAANBsXqeNBWBGSil3JnltkoNJLk/yhdWnfjnJuNb6oVm1DYCt\nZ9pYALZFKeWyJH9Qa71sxk0BYBu5QwHAVJRS3pcktdb3lVL+NMlvJbkqyZ8m+XCSf5zkJUl+otZ6\nXynl8iT/Mcnzs7Jy7T+qtT40i7YDcHbGUAAwCy9Kck+t9VVJzk/y12ut1yR5X1ZWqE2SjyZ5Z631\niiQ/neQ3ZtFQANbnDgUAs3LP6r9fTfLpNY+fW0q5MMlrkvxqKeVM/QtLKc+vtT4x3WYCsB6BAoCZ\nqLWeWlNc7D29L8mJWusPntlQSnlJku9Oo20AbJ4uTwDsOLXWp5J8qZTy5iQppbw+yR/OtlUATOIO\nBQA71d9O8qFSyjuTnEryN2utpiYE2GFMGwsAADTT5QkAAGgmUAAAAM0ECgAAoJlAAQAANBMoAACA\nZgIFAADQTKAAAACaCRQAAECz/wcS9nYb202fEAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10e094810>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"librosa.display.specshow(S, sr=sr, x_axis='time', y_axis='linear')"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Mel-spectrogram"
]
},
{
......@@ -152,6 +342,7 @@
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "subslide"
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment