Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
musicinformationretrieval-com
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
A.S.
musicinformationretrieval-com
Commits
6fe2a0a5
Commit
6fe2a0a5
authored
Jun 20, 2014
by
Leigh Smith
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Moved to use sklearn preprocessing for scaling
parent
a262e540
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
10 additions
and
6 deletions
+10
-6
lab2.ipynb
notebooks/lab2.ipynb
+10
-6
No files found.
notebooks/lab2.ipynb
View file @
6fe2a0a5
{
"metadata": {
"name": "",
"signature": "sha256:
75f989dd2ab73ca4005602cfbe578941785ac582da4dd30251ada2d364be673
a"
"signature": "sha256:
0949f131655e064cf3e40a0f5c298b8bd0662c1299e6aa2be192c8ce2d4c160
a"
},
"nbformat": 3,
"nbformat_minor": 0,
...
...
@@ -106,6 +106,11 @@
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"from sklearn import cross_validation\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn import preprocessing\n",
"\n",
"def crossValidateKNN(features, labels):\n",
" \"\"\"\n",
" This code is provided as a template for your cross-validation\n",
...
...
@@ -130,15 +135,14 @@
" print(\"TEST: %s\" % test_index)\n",
" \n",
" # SCALE\n",
" trainingFeatures, mf, sf = scale(features.take(train_index, 0))\n",
" scaler = preprocessing.MinMaxScaler(feature_range = (-1, 1))\n",
" trainingFeatures = scaler.fit_transform(features.take(train_index, 0))\n",
" # BUILD NEW MODEL - ADD YOUR MODEL BUILDING CODE HERE...\n",
" # model = knn(numFeatures, 2, 3, trainingFeatures, labels[train_index, :]) \n",
" model = KNeighborsClassifier(n_neighbors = 3)\n",
" model.fit(trainingFeatures, labels.take(train_index, 0))\n",
" # RESCALE TEST DATA TO TRAINING SCALE SPACE\n",
" testingFeatures =
rescale(features.take(test_index, 0), mf, sf
)\n",
" testingFeatures =
scaler.transform(features.take(test_index, 0)
)\n",
" # EVALUATE WITH TEST DATA - ADD YOUR MODEL EVALUATION CODE HERE\n",
" # voting, model_output = knnfwd(model, testingFeatures)\n",
" model_output = model.predict(testingFeatures)\n",
" print(\"KNN prediction %s\" % model_output) # Debugging.\n",
" # CONVERT labels(test,:) LABELS TO SAME FORMAT TO COMPUTE ERROR \n",
...
...
@@ -147,7 +151,7 @@
" matches = model_output != labels_test\n",
" errors[foldIndex] = matches.mean()\n",
" print('cross validation error: %f' % errors.mean())\n",
" print('cross validation accuracy: %f' % (1.0 - errors.mean()))"
" print('cross validation accuracy: %f' % (1.0 - errors.mean()))
\n
"
],
"language": "python",
"metadata": {},
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment