Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
musicinformationretrieval-com
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
A.S.
musicinformationretrieval-com
Commits
64d7a49e
Commit
64d7a49e
authored
Jul 27, 2017
by
Steve Tjoa
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
dtw
parent
17b64f16
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
519 additions
and
383 deletions
+519
-383
dtw.html
dtw.html
+436
-353
dtw.ipynb
dtw.ipynb
+83
-30
No files found.
dtw.html
View file @
64d7a49e
...
@@ -11773,7 +11773,7 @@ div#notebook {
...
@@ -11773,7 +11773,7 @@ div#notebook {
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[
74
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[
1
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"o"
>
%
</span><span
class=
"k"
>
matplotlib
</span>
inline
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"o"
>
%
</span><span
class=
"k"
>
matplotlib
</span>
inline
...
@@ -11844,7 +11844,7 @@ div#notebook {
...
@@ -11844,7 +11844,7 @@ div#notebook {
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[
123
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[
2
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
x
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
-
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
-
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
]
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
x
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
-
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
-
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
]
</span>
...
@@ -11860,7 +11860,7 @@ div#notebook {
...
@@ -11860,7 +11860,7 @@ div#notebook {
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[
127
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[
3
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
plt
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
plot
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
)
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
plt
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
plot
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
)
</span>
...
@@ -11878,13 +11878,13 @@ div#notebook {
...
@@ -11878,13 +11878,13 @@ div#notebook {
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[
127
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[
3
]:
</div>
<div
class=
"output_text output_subarea output_execute_result"
>
<div
class=
"output_text output_subarea output_execute_result"
>
<pre>
<
matplotlib.legend.Legend at 0x11
ce5d91
0
>
</pre>
<pre>
<
matplotlib.legend.Legend at 0x11
75965d
0
>
</pre>
</div>
</div>
</div>
</div>
...
@@ -11898,334 +11898,342 @@ div#notebook {
...
@@ -11898,334 +11898,342 @@ div#notebook {
<div
class=
"output_png output_subarea "
>
<div
class=
"output_png output_subarea "
>
<img
src=
"
<img
src=
"
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VGXa//HPtMxMKi2h9zIB0gMK2CsgRSkqooKw4uqq
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3WdgVGX69/HvtMxMKi2h9xYgPYCAIooiTVCKiih1xVVR
uO1ZH3d119/q7j7bFRVdERCQovRiWRVR7EB6Ahl6DYSQQtpMMuX8/piQEJQWcjJnJtf79doX6+TM
3F232tZnRXfd9l+xrigISlGqgOIKiGJH0hN6L4EQUkibybTzvJiQEJQWcjJnJtfnDTo5M7nzm5PJ
5M53TiZzzbmv+9YpioIQQgghhBBCaJne3wMQQgghhBBCiIuRwkUIIYQQQgiheVK4CCGEEEIIITRP
XHPu6751iqIoCCGEEEIIIYSG6X09ACGEEEIIIYS4HClchBBCCCGEEJonhYsQQgghhBBC86RwEUII
ChchhBBCCCGE5knhIoQQQgghhNA8KVyEEEIIIYQQmmdsqW9UVFShmXWX27YNpbS02t/DCGqSsfok
IYQQQmieFC5CCCGEEEIIzZPCRQghhBBCCKF5xob6Rvn5pQ31rS6radNgiooqfD2MgCYZq08yVp9k
Y/VJxuqSfNUnGatPMlafZKwureUbHR2hO9/XWuUVF6PR4O8hBD3JWH2SsfokY3VJvuqTjNUnGatP
rC7JV32SsfokY/VJxurSWr6RkWEX/VqjvOJiNBp8PYSAJxmrTzJWn2SsLslXfZKx+iRj9UnG6vKn
MlZXIOXbKgsXIYQQQgghRGCRwkUIIYQQQgiheVfU42Kz2WKANOA2u92e3zxDEkIIIYQQQojGmnzF
fBtl4SKEEEIIIYTwL1K4CCGEEEIIITTvmgqXgoIChgwZwoEDB+prPEIIIYQQQgjxE3UuXJxOJ88+
xWazmYD/AI7mG44QQgghhBBC/NCVXHH5B/AG8EwzjUUEAbfHy7ovD3D0VBW1tW5/DyeohFWU0v1w
+ywWi6U+xyOEEEIIIYQQP1HnVcVeeuklJk2axFtvvVWf4xF+zuX2sParQxw/U47D4fL1cAJKSGkR
Pt0P59P12F5cfbsTcd1w3MkpuGMHgcnk7yEKIYQQQqhGpyiXv0qxzWZ7COhmt9tftNlsnwOPXmyq
7Y/upv3R3bQ9sR9n1/aEDR6IKzEJV3RvMJl8PUQhhBBCCNXoFEVRrvZOq1ev5tSpUzzyyCNMmTKF
mNvtUQJp1QJx+U5X1vCXRdvJ21/s76EEPGutg76Fe+l/Yi8DTuyhf+EeOpYXnf8OFgskJ8NVV8HQ
5557jq5du17yPi6X269WLRBX72xZJX9d9CM5Bwt8PRS/Z3XY6Jq3n+6n9tPj1D665+2jZUn+xe9g
ob5/+/UD3XlXFBRCCCGE0KLzvnlpauGyFVDq/pcE7AbG2+32E+e7j5b2cYmOjqCoqMLfwwgqx05V
sUBiIvTvD/36ef/t1g10uoYbtBBCCCGEiupUuNx3333odDp0Oh27du2iU6dOvPHGG0RGRl70Plra
MWdVFkVlTlJt0Tw9/SrKT2tnTXBNq6nBuDMXU2Y6pswMTBlpGHbb0Z31u+lt3wFXcgqu5FRcSSkU
xyUyMkxT4wkEJ86UM29lBvnFdpJ7RvKHaf0pOaudNcE1rbIS485sTOmpmNLTMKWlYNi7B915v5qe
9rSx6r1vidqVzbDqwySWHcSUvxOdx9Nwn6g2uJOScSWn4k5OxZ2cgrdTZ3/8hAFLXivUJfmqTzJW
5i1wJibhTEzGmZBEXseerPzwOyJ2ZTKg4ijxxYcx7d6Jzu2uuU9EE1wJiTgTk3ElJuNKTMLTqrUv
n2SsPslYXVrL90L7uDRpqpjdbr/+zP8/64rLeYsWEdxy9hfzxvpcHDUexo3oxZ3X9cZqNlIpn/b/
fkK/Ja8V6pJ81ScZq08yVp9krC6t5XupfVzqNFVsyZIl1f997orLpYoWEdiyDhbw5kfZ2CrdjBnU
kNeLYe8ejOk7MGWmY8xIw5iXi662tuGQsHBcw6/BnZyKKzkFd1IK3u49Gl09aQ/84v9ieXH+d/zx
iTsGd8ZqNlImn/b/lMeDYf8+jKk7MKWnYkxLwZiTjc7hqDkkJBTnwOtxJSbjTEzClZCEp32HWldP
QAldO4Tx1Jh+dDqyF1NmGsb0NIyZ6YR8sYWQL7bU38/TqXN9EeNKTsWdlIwS1aYlExBCCCGEaJIr
mgO//ls0c9/5nr8cKqRtixAeH92NVsf2Y0pPwZiagjE9laAvtxL05dbq+7lbta4uYpyJybgSElEi
WlVMtG6KovDpjqOs+GwPBr2eR8YNYtjgTv4elnYoCvpjRzFmpGHKqCtSsjLRVzZ8qqGYTLgHx9UV
mjRkAkIIIYQQdVLnHhchFEVh847jLP98Hwa9ngfH9GZAn1a+HpZ2KAr6E8cxpqVgSqsqUjLS0ZfV
Kam4k1Lw9B8AhotPqwyzmnjq7gTe3byXT9OO8sf3dvLExHgGXHV1/TG6slKMdVdxjHVjMH+4CfOH
fKqhmEy4+sRUFSnJuBKScHfvAYbLT6sMsZp4/K44Ptiyn80px/nLhzt5dHwsPfpfV32MrrgIY9VV
m+qPcffp27iYiUsAq7V5sxBCCCGEuEJNmirWFDJVLLi4PV6WfrKbLzILiAwL4clJ8fTtElX/9daY
HGPVGMwbN2DeuKH6GFeXrrWLmZg4sFrrNwshhBBCiGtUp6lidaG1S1BaGo8/crk9LNm0ly/TcwkP
sa6kGGNmOqa6qx2m9DT0pxr6UhSdDk//AbiT6gqE5BTcg+PBbG7S9zs7488zjrH0k90ATBtl47qE
CeKxCbF0bRNR/fXGmLGusABjeiqmqqsdptQU9Gdq+lIUnQ539x64EqoKhMQkXH1iwWyu0/c7P+Mv
Lue9n/54AcaM9IZiJjMdffnphnEajbgHDsadlII7xTc1zWOLBWPr+5yjNZ7HLUnyVZ9krD7JWH2S
0k6wZNNeAKaO6MnguDYXvZ/+ZC7GtNSaYiY9FX3J2ZpxGo24evXBlZCEK8k7Nc3dMxqMje9zjsZ4
8ZV777O9bM8/+aNfMxh0eDyX/zZ9aGwM99zc77xfX736PXJysnj++T/x4ot/YNCgOCZOvPuij9vs
HjckyVd9krH6JGP1ScbX7sPP9/Pj7tM/+zWDQYfbffXlQL/oKO4e2u2iX1+16kOysjJ47rkXmDv3
U8VE61bpcDF3bQ75h8voERPO7MkJtIu0+HtYLauqClNOVt2UrDRM6ekYDh9sdIinW3dqxt6Jq64A
z/TuHcP48Xdd9nHrfaqYaNzKbE5eX5PF7qPFdIgKZc7EOJqFN7JlscvLMWVlVE3JSsGUmorh6OFa
cCcmoUREqjKcG5O70rGtlbnrcln4QT7HT1Uz+ca+6PU//N33du5Cbecu1N4xtu4GL4YD++qnl5ky
h7jbtafy9jtwVhUArvgElLBwVYZzU2JbWja18vrabBZ+spuTZyqYeFNX9PqfTtfztG6Do3UbHKNu
0jHmZGHKyYIlCwFQQkNxxyfW/yyupBS8vXpL878QQgghftSkSfewY8f3/OlPz+NyuS6paLkYueIi
r7rBg+HQgerpZaa0VIxZGZiyMuC9hQAowcG4YuOrfxZnQhKeTp2l+V8IIYQQP2vChLvZseMHXnjh
Lsvx4ipeXpnNyTIHKQOimTV2EOaQH05rCqqMXS6Mu/IavbE32Heh83rrD/G2beub7lX/xj4VJSZG
OZxO5xUVLZcjV1zEVTlZUM7LKzI5XWwjqUcks27vjTnop9OaAipjpxPjrpxab+wNe3ah83iqD/E0
1WH9WMaFJdW8vCqbEyXVJPZtzyPjB2M1N+HzCZcLY/7Ohp85Pe3Hf+b6q0e+n13p2PFKfyxNCarz
beqd7lX9xj4ZJSpK1WH9XMZ5hRW8vDKTU4UVxHdtzoNj+2A11+HzCacT4+6dNT9zasrP/8zVV4+8
WIMkX/VJxuqTjNUnGatLzXxzc3N49NEZzJ//DjZb7KWOp3lXFWsKKVwCX+6BYl5fl4ejxs2Y4T2Z
P7vSsuW1/liaElDnsQZJvuqTjNUnGatPMlaXmvlmZ2fx0EMzeOed9+nZM/qKx3MxUriIK5Z9qIA3
cH0f9Of5xD1gM/Z6Mezf5+tHOdObkpuNrqam/hAlNBRXQlKjqVTenr1a/OrD+TKudrp4fV0ueQdL
1uZgq3QxemBHxt3YBf1FPnH324w9HgwHD3j7Uc71pmRnoqusrD5ECQ7GGZdQayqVp2OnBr/6cLGM
6RodxlOTEujQphl6Vs5cZcpIr7vKlIbh0MFGh3i6dms8FS4xCSUy6scfLwAE7HkcICRf9UnG6pOM
K+xO3libTc7hItpGhvD4hDhaNKmHnpVzV5nSUquuMqVgOHK41iHutu1qT4WLT0AJj/j5x/MDfnse
1ScZq0utfF0uF48/PosxY8azadN65s59C9Ml7Dknhcs55Bfg8iiKwmfpx1j+6R70eh0zRscyPO7C
+wnJV32SsfokY/VJxupSK1+n08ns2bMYPXosGzZ8xOuvv43pCvack8LlAvILcHUUReHz1BMs27wP
TfiBkrH+eAHG9DTfCl/paRizMn7Y7zEozlek1DWvewbYNNHvcaGMPV4vKz7dy+b0o0SEmnhiYjz9
vV7HjJHRDIy5dBO+v2SsP5mLMTXFu8JXagrGjLSf9nv0jvEWKVXN6+4ePTXR73GpjN0eD8s372dL
uzX/6mH1fT11jf+mjHT0RQ1zaBWdDk+//r5iJsW3+IB7cLxv35kAECjncaCSfNUnGatPMlafZKwu
6nHCgk08Oj6W7u3qf/Ww6r6eqsZ/U1oq+vyaObSKToe7W3dvMZPkXXzA1SfWu++MH/CX89hfSb7q
tfKdM+efREZG8dBDDzN//n+orq7iySd/eSnjkcLlbPILcOncHi/LPt3D5xnHiAw18cSkBPp1vfgn
k4zVJxmrTzJWl1r5zpv3L8LDI5g+/QHeeee/VFSU89hjv7mi8VyMFC7iklxuD0s37+OLtBOEB5t4
6FrMWFda4lth68wyxBnpGAobr+Lt7tuv8Qpbg+M1u8LWpWT8WfpRln2yB70epo+K5Zp4lfdxURT0
dEIc3dpe/hN0LWasKyr0rrB1bhnitFQMeadqHePq2q32Clt9YjW7wtaVZPx56nGWbtqHXg/TRkRz
BccaisGMNIyZGT9cSW1QXEPGyamXvJJaS9PieRxMJF/1Scbqk4zVJxmrS2v5SnO+aJJKh2/K0a5D
fazK+7goCvrcEzXFYFoKxvS0n66k1jumJuPE5CteSa2hafE8DiSSr/okY/VJxuqTjNWltXylOV/U
pXSLDmf25Hg6RGnzTfwPVFdjzMn27WlyZvWsA/sbHeLp3IWaO8bV75USjHua3JzSjY7tQnl9bS7z
SZnNO+Vo15Ei2kWGMmdiLC0itPkm/icqKjBmZXr3NDm3etahg7UOcbduQ+WoMdV7pQTiniZDk9rR
399FQXEVk27oe94pfldMp8PbtRu1XbtRO+5O321n9q7JSPOtZJaZjjE3B1NWBta35/sOCQvHnZDY
slkwb6zJ5p2Pd5FbUM6EIV0vOsXvmul0eNq2w9G2HY4xd3hvO7d3TVqKdyWz9FSM2VmYMtKwvvuO
qGg8d+8aIYQQQrRuUriIH3W8uIo5q7IpLHWQ3L8Ds8YNwhKi0dPF7caQv6v+TbEpPQ3Dj+wiX3vD
95CQUFxx8bWKxgv3rhFCCCFE4yaFi/hZJwvKmbcyk7wiG4ndWzBrTG8sQRo9XVwuDLt3Vb8pNqWm
TXXTlVrXLvKDe7Xjd9NSmbMqmw+/O8yJ4uqWfT71ejwDbHgG2Ki5d6rvttpajDtzG5ZlzkzH9N03
YPiZXeQdQ26umq7UuHaR79OpGU9NTWbeykw2fn+UUwUVDft86vW4e/TE3aMnlfdM9t7mcGDcmV2z
hHz7df3dvO3b1+9tU7/gQYcOLTNmIYQQQmiOTBUTP5B3sITX1+ZSXePmjmE9mXjD+Zvwz0e1jBUF
LHN6KqbvvyXou2+q7+Zp3rx6b5vqBQ9atGiYMQshhBBCc2SqmPiJnMOFvLEmm4pKF6MGdGT8kIs3
/YH9DW9265bu1TkcDYdYLL6le8/0VCSn4OndN+g+vb/cjM+9gvbU5ATaR2mn10RXWYExO6t+o0xT
4V+MahkrCvpDB2ve7FYt3auz2WoOsVi8S/ee66lITMLduWvAfXp/tRlfeAXt8YlxNI/QTq+JrqwU
ZjqGw4caHePp3qNRMeNOSEQJj1BtTPJaoS7JV32SsfokY/VJxurSWr4yVUxcsrN7In4yZqD6PREX
Y2ZG9UaZpvRUDEeP1DrG3b5DrWLGFRePEnrxS8rXSl4r1CX5qk8yVp9krD7JWF1ay1emiokrdn5P
oS88UfdGdoevSMlMR19WVv91xWDAEzvIN92rbkleT+xAuIRVK1qbcKuJX9yTyPJP97Al4xgvLNp+
xC9G91K/J+Iy9Hmnqt7I7vAWKemp6IuLq7+uGAy4o3t7p3tVLcnrju4FV7BqRWMTajXx67vjWbZ5
yT1LLUEJj8A14lpcI66tv01XVIQpK/2spajTsGxYCxvW+u6j0+Gxxfqa/88UM4PiICTEXz+GEEII
H1vTTvD8oh+vuGepISihYTgH3YBz0A3Vt+ny8zFlpJ63FHUKlnVrYN0a7310Otw9o73N/+eKmd4x
IVQihYsAfKtQLf90D5+lH1N1FaoL0ZWfxpiZ0bAMcUYahuMFjY5x9+5D7c231hUpqbjjEyA0tEXH
EBTkqx9DCCGEECqRwkUA3lWolm3ex+epJ1RdhepSdCVnMaan1SxDnJaC4WRurWNcnbvgGHprVZGS
GciMBj0PjrTRpUMYyz7dzd+WpTNj9MCLrhLnL0p0NLW3jqT21pF1NyjojxyunxJozEzHlJmBMX8X
jCs2DoKDG3Sc/sxo0DNleE/atAhh6ea9/H1pKjNG9rrsKnG+okRG4rh1OI5bh1fdoKA/drR6SqAx
lhVLfYeEhOCOi2+0x4ynX3/Q6/34kwghhBDiSknhIqhyunijbt+PbtFhzG6ufT8uxOnEmJvd6A2o
PRVTehrG3buwLF/iPSQoCFdMbK09ZtzduoNe78OfRAghhBDXSgoXQbndyZtV+360iwxhTn3t+3Ep
ce+eRod4YjpSM+qOhjegSckobdupO65W4pbUbnRsZ+X1dXnM27STguKqC+7Loxk6Hd4ePant0ZPa
djvG7Mxab0CN+/fVOsQd1ZLKEaNq3oAmJKI0babuuBqJW5Lb0bKZlTfW5jB/w05yC8ovuS+PZuh0
8RN8t3k8GPbsbmj+z0j3LcyQnoaVeQB4IyJxJyY12mPG27Vb0E0fFEIIIYKZFC6tXGFJNS+tyqaw
eDp0xNGhI46x47y3ud0Y9u2taf5PS/UuzJCagpX5AHjCwnHFJ9TaY8bTtl3ATR8UQgghApkULo1c
pJqkfr4m/CbttH4hHg8Ge37DXimZ6Rh35qJzu+sP8UZEUnvdjWctkZuCt3MXeWOporje7Xl2Wiov
XmEF/1mZSV5hBQndvE34ddpp/VLcbgx7dtfslZKeinFnNjqXq/oQT1g4jsE3nbdEbhKe1m3kjaWK
r8zm/W8Pcby4mofHDtTuIgznYzDgiR2IJ3YgNfc94LvN6axr/m+4emf6+ktCvtpafzdvdEzDFMO6
Yjo35+mpyby8IpOPvzvCyYIKHri9l3YXYbgYgwF3dC/c0b2ovPd+7212e1Xzf83VO9M3XxH09bbq
leWUdu399EMIIYQQ4mKkOb8V23WwhLnrcqlyuhl1dQ8m39AXvf7KCwVdYSEd8tKo/uJr3xvG7Cx0
u3kio2qmGFatLKc0a+6jH0IIIYQQlyPN+Y3YrsOFvL42m3K7ixHXdWDikK7o9ddeKOjy8miRk0LF
1VX1X1fMZtxxCfVvGt3JqXj69JWpPJepuc7jSoeLuWtzyD9cRo+YcGZPTqBdpHaa9puLrvw0xqxM
l9943zBmZqCrKK/+umI244qJq37T6EpMxt2lq0zluUr1dR6X2Zy8viaL3UeL6RAVypyJcTQL107T
30pmdXvMGI4dbXSMp2evuvNyCK6UIbQdfTNFJdV+GnHwk9di9UnG6pOM1ScZq0tr+coGlOfQ2hPk
fn3RlZzFmJHuXcmsao8Zw4njtY5xd+xUdV72xZnUl6Yjh5JfWOGjEQc+eS1Wn2SsPslYfZKxurSW
D59nHGPpJ7sB38aE1yZcYRO+omD6+kusC+YR8uGm+qWIFb0ejy228UpQsYOkeboZNOd57PZ4WfrJ
r2xAeQGtPUG+8EXaCZZs2gt4Nya8Ie4am/AVBdM3X2FdMJ+gjRuqlyJW9HrcPaNrrwQV3Vuap+tB
br7ILCAyLIQnJ8XTt4s2mvbVpCssrC9izqxUpy8tbTigVy8qH5iB8/5pKO3lakxzk9di9UnG6pOM
fZ7HLreHJZv28mV6LuEhQTw2IZaubbTRtK8mXV5edRFzbqU6fVFRzQGdOlF2/wzs901FaS5XY+qb
1ScZX7mw55/FvHHdj37NoNfh8V7+2/SacXdR9fyL5/3688//jttvH82IEddy8OABXnvtJf7+95cv
vBarTzJWn2SsPsn42oU89zTm9Wt/9msGvQ635+rLgcoxd1L+3NyLfv25557itttGMmjQDRw+fIjX
+riyqpio5/F6eXfzXj5NO0q41deEP6B705vwdRXlmN9bgfXttzDa8wFwD47HOP1BymITcMUlQHh4
XvsP//jHy5d9XFlVTFRzezx8sGU/m1OOE2r1NuH3aF/3JnxdaQnmD5djffdtjHt2A+DqE4tx2hSK
cw1fqMRo0DOtrml/xeY9/HVpBjPHxDJskDab9puL0rEjtSNHUztydN0NCvpDBzFlpGHa+jnWtasI
o+NwxsRBaGh9DV+oxGjQM7WqaX/5ln28tCSNmaOjGdBbm0379UVp2RLH8JE4ho+sukFBf+QwprQU
f/EPhP39z9TcORHHzFm4U4b4d9BCCCFEABg/fgJr165ixIhref/9DYwde+cVP6ZccWlFqp0u3lif
TNu+wLpmJaFz/0zIP16k8o7x2GbOwpXU17eDFkIIIfzA2LHjWLNmJYMG3cDHH6/j9tvvuObHlCsu
R+6BErp2CGP25ASim9iEb8jfhXXhPMzvrUBfVYliMlEz7k4cMx7BfdXVRMdEtsqMW5Ja53HO/mLe
jUiF3cmbH+WQfaiQti1CmDMxjsg6NuEbdu/CunA+5g+Xoy8vQzGZqBxzB7YZD+Lqfx2RUeGNMuOG
WJ+Lo8bD2BG9uOu63tpv2ldJtMlD5atvYFn4Fsb9+wBwJSXjmPkINXdOBKvKi1gEudb6WtySJGP1
pNZ5nHWwgDc/ysZW6eb2QZ24c3Bn7TftqyTS5Kbs1TexLHwb48EDADgTErHNfJDKO8aDVeVFLAJc
Scbqk4zVpVa+iqIwffoUXn75dX7+88eZP38JRuPFr5nIVLFztMZfgMLSauasyuZ4cTUJfdvz0/GD
Y30tbkiSsfokY/VJxupSK19FUZg2bRIvv/wGv/rVbN555z2MxstfM5GpYhdojL8AeUUVzFuZycmC
L78J3+Ui5MNNWBe+RcjXXwLg6dIV57QZOB54CCUmpv7Q1phxS1Mz42OnqpizKouiMieptmgeHjMI
CuK6NueXY/tcfRO+00nQxg1YF75N0DdfAeBu0xb71BnY7p+OEhVVfWhjzLihqZnxiTPlzFuZQX6x
c4hBle+lZfUZe72YvtiCdeE8Qj7+CJ3Xi7dtW5xTp+GYPhNvr97+HmpAktcJ9UnG6pOM1ScZq0vN
neSekTwwujfmIIMq30vLqjP2eDB9uRXrwvkEffYpOo8HT9Om2CdPxTZtJp5OnX09VL8krxPqk4zV
fN9552327NlNTExHHn/8qUsdjxQuZ2ttvwD5h0p5bW0OVU43I6/qzt039rusJnx94QksixdiWfI2
JxmrTzJWl5r5vv/+u+zbt5eoqJbMnv34FY/nYqRwaQR2HynitTVZlNtdDO/fnrtu6nZVTfj6vFNY
hhPHAai97kYcM2f5ptj8SPXc2jL2B7UzrqiuZe7aXOxHyujZMYInJ8UHZdP+hfxYxvojh7EuXojl
Fi/E8t67GE6dBMAx+CZsM2d5p9j8TPXc2DL2BbUzLq1w8PqabPYcK6ZjyzAemxAbkE37l/JzGeuP
nbfRFxej6HTU3nIbzpmzqL35Nllk4jLI64T6JGP1Scbqk4zVpWa+JSXFTJw4hkWLVtCzZ69LHc95
HcW6eCGW999FX1CAotPhuGUY9pmzcAwdJotMXAV5nVCfZKw+yVh9krG61My3sLCA8eNHs2jRcjp2
36TKX9gg90XmMf75bibOWg8PjY7l3pv7X1rRoiiYvv2aiFkP0S55EGF//wu6qiqqH/4pJV/v4PTq
7HTF47kY+Qsb4L5MP8G/PkjH7nAzfWQ09wztfmVFi6Jg+u4bwmZNp1lib0L+8Vd05eVUPPBLCr/Z
DdSOGfejRYsIDhGhIfxqShLXJXTmUGEFLyzewf6Ccn8Py++83XtQ9bs/UJyZT/lrb+JOGYL504+J
wdlV63CMHvOzRYsIDGHBQTwxKYHBca05klfK84t3cDC3xNfD8jlP+w6UP/VnCtJ3U/LaW7iS+mLe
mno37a5OwvraHHSlJf4ephBCCOF3Ho+HxMTkSy5aLkYKlyDl9Sos/3QPiz6yYzUb+fWUJK5P7HLx
/BkRk++i2XUJWF+bh66o0NfDFEIIIXzO7XYTH594xUXL5UjhEqA8HoVlm/ex6NM9WM1GfjspgRvj
O1ZWYln4Fm1vHE6bO0djWb8GT/8BVPzt3xRn5VP157/j6T9A/R9AaILRoOeh0bFMubkf5VW1/HVZ
21z+jmVlWBa+TdObBtLkjpFYPlqNu3sPSv/+fxRk7Kb8xX/g7t5D/R9AaILRoGf6yGgmDe1GSbmD
Ott2Ffp7WNpgNlNz9xTKPtxM6adbcUx9EH3hCcL/37O0T4wl/KmfYczK8PcohRBCCL/4/PPN/OpX
l5amsn1Xnq+HpQ1mM5V3TaJ44xaKNm/DNnkK+rxThP6/p2keH03o449gzEjz9SiFEEIIn/jiiy08
T/LTnz7ebI8pU8WCULXTzX825JGzv5gudU34MRdpwjfstvua7d9djr6yAsVopGbseJwzZuEaNuKy
8cRj/PKXs+vtMWWqWACqsLv477ocsg4W0KaqCT/qMk34hr17vM32HyxDX1aKYjRSeftY7DNm4Rww
N4IM9oy1oKUzzt53ijfW5+Gs9TD+ml6Mvzb4m/YvN2NdaQmW5Uuxvv0WhoMHAHClpOKYMcvXzG9p
6Ko3ggz0jLWgoTPOPHCGNz/Kwe5wM/b6Toy9IfCb9q82Y11RIZZlS7C++zaGw4cAcCYlY5sxy9vM
XVPtLkZeJ9QnGatPMlafZKwureUrPS7n0NoT1JxOljmYsyqbglNVxPfxNeGHWs4zncvtJuSjD3wN
b2lcU+0uR14n1CcZq08yVp9krC6t5Ss9LhfQ2hNUn04X25i3MpPcM+XEdvE24QdbLjKdy+Ui6NNP
x19+AYCnU2ec02bgfPAhvB2bvhRuMGesFf7I+FhRJS+vyubUaSdDY2OYOWYgZlPwNu03OWOvF9Pn
vA3HX30JgLtVa+xTZ2CfMh1Py7ovhRvIGWuFLzI+kV/GyyszOXPWTr/oKGaO7oXZFLhN+3XO2OPB
m337Gn3yX3SKgrd9+4Zm/h49m3+wAUheJ9QnGatPMlafZKwureUr+7i0EvbDpby2NpdKh4vbhnTn
9MUW775Gm/6HTlHwNG9e08zfoWP9D9YPyeuE+iRj9UnG6pOM1aW1fGUfl0Ziz9EiXluTTZnNybC+
3pt/vAlfd/Ik1nfexrJ4IYaCYwDUXnOdr9l+1BgwmVp66CJAdI0O59npQ5i7Joft+ScpKnPw5KQE
7bln6M834etOn8b6/rtYFi/EkHsCAMf1g73N9iNGg8nU0EMXfqJtZChPT+vL66uz+HH3afKLbTw2
2kaY/T00bdHrcd18G66bb0N/6CDWRQuwLFtM6Cv/xvrqS9TePgrHjFm4brxZmvmFEEKISyRXXILE
IY6mYWZfD01b9HqcQ4fhHDoM/ZHDWBctwLJ0McGv/B/WV/+D47YR2GbMwnnTUGnmF0IIIa6QXHEJ
l1kFLP6vHYAHbh/ADUldGx+gKBi3fY914ZuYN65H53LhDQun5p4pOGbMwhM7sFnHE4wZa40/M3a5
EF9l5LL4f3sAuP+2HgxJaFv7AEXBuP0HrAvfwrz+I3ROJ56QUCrvnoRtxizc0b3qdTyBmLHW+DJj
vSz5r52vco7TJjyE2ZMT6NUp0i9jUVOzZux0Yl63GuvCeZgy0gFw9+6Dc8bDOKfcj9KmbfN8nwAi
p8vDe//bw9dZJ2kSGsSciXF0ahXuk7GoqV4zttsxr12FdeF8TGmpALg6d8E+4wHsk+5DadK0fr6P
rxPqk4zVJxmrTzJWl9bylali59DaE3QlvF6FlZ/v5b/bjhBmMfL4hHhie571BqiqCsvq97AufAtj
H5HXCfVJxuqTjNUnGatLa/nKVLELaO0JuhYej8KKL/bzv+3HCLEYmT0uluiO570BKi/HsupDrAvf
Xg4Ablusb8793feiRKjzZjOYMtYqf2esKAr/3XaElVv2YjLq+cnYQQyNjbn4HQOIWhkbM9KwLnwL
xpiTBYCrZ7R3zv1d96CEqfNmM5Ay1ipfZ6woCv/bfowVW/djMur5xe296Rcddfk7+hG1MjampWBd
89pV6GpqUKxWnBPvxjlzFu74xGb/flrl73O4NZCM1ScZq08yVpfW8pWpYkHKUeNrws/eV0zn9qHM
+DbmNSvRVVaiWK3Yx9+FfeYsXLHx9f79tMrX53BjIBmrTzJWn2SsLq3lK1PFApSt0tuEn3mggNbN
npxAx7ahABj27cGy8C0sK5ahLz+NYjBQM+4uHDNn4Rpx7WU32wtxLp1Ox6ire9CpfSj/2ZDH6+ty
g5kzMY6WTYMBMBzYh2Xh21iWL0VfchbFYKByzJ3YZs7COeiGq262F+JCOp2OEdd1oFXzYP67Loc3
OX5tb8Zd0wudnF8X5E5OpSI5lcrnX8Sy7B2sb8/HunQx1qWLcQ25CsfMWdSMuwvMMgVPCCGEOEOu
1mZz8obOjLm+Ezo5vy7JlZhMaWIyZc/NxbL0fazvvoN1yWKsSxbj7Nsf28xZVI65E8wyBU8IIYQ4
uASoorom/GOnqojr3Y5H7xxMqFFHyCf/xbrgTUK+2AKAJ6YjzgcfwjltBt7Ol7AccjMJhoy1TksZ
R664+Kn8qib8E2fKiencjIfu6EOwUUfQpv9hXfAWQV9uBcAd1RL7lOnYp87A0/oKlkOuJ4GQsdZp
Hz3pa9ovLndy1cAYZt4xkJAgaNpvsYw9HkI++wTLgnmEfPapr5m/QwccD9T97nbrrv4Y/EBL53Cw
KePjp71N+wUldvr3imLmqF4EBUDTfoNl7HYT9PkmLAvmE/T5Zm8zf4sW2O6v+t1t1179MfiAls7h
kozVJxmrTzJWl9bylSsuQWb3kTJeXZNDpcPFranduC8hirA3XvY12x89AkDt8GtwzpxFzR3jpNle
QCUZq08yVp9krC6t5StXXALM3mPFvLo6izKbk1uT23FvXAQhb77sbbY/fgwAx8Drsc+cReWoMdJs
qK5bTDjPTR/Cq2tz2LaroWm/TbhcMbgkBgO1t42i9rZR6A/sr2/mD3vpH4TO+Re1t4/2XS294Sa5
L1TXLiqUZ6b15dU1WWzfVdO03yRUrhhcEYMBx7AROIaNQH/oYHUzf8h//knwvH/juG2k92rpkJvl
WiqEEKLVkisuAear7OMs+igfxaswu3s113y1DvPGdehqa1FCw3DePQXHjIfxDBrs13EGcsaBQosZ
aqkQQohGS664+JmvM0+y6NPdKB6FOe0ruP7rtZjXr0XncKAEh2C/axK2GQ/g7t3Hp+P054z9hRYz
u9xeFn2Uzze5J2gbYWb2pAR6dorw97CazK8ZOxy+Zv4F8zDVbWTp7tvP18x/71SUqDb+GVcz0uI5
dro8LPp0N99mn6JpmJk5E+Lo2Orin5xonU8zttm8zfwL5mOq2sjS1bWbt5n/nskoEU18M656pMVz
HGwkY/VJxuqTjNWltXybvTnfZrOZgAVAL8AMvGi32zdc6D5SuFwZr1dh1Rf72PLVHm7b9zVT920m
ONBIxuqTjNUnGatLa/nWe3O+0+nkySef5MSJEzgcDh5++GFuueWWS95Ha4FoaTxXwuNRWPnlAbZ+
wp4HgLv/ABwzHqbmnvtQIqP8PFKfQMw40Gg1Y0VR+Oj7w6z6fB8mk55ZYweRagvMpn1NZKwoGNN3
vY9hB75h8oEthO3JAcDVvQe2GQ9Qefe9KOERPh6plz9m7G+0mrGiKHz6w1FWfnEAk0nPrNt7k9zT
YF0wD/P6NXUfUoTinHQvjpmz8AyO8+/4roAm8g1ykrH6JGP1Scbq0lq+akwVewAottvtD9pstvZA
P5v2NZGxomBM3YF1wXzMH62u+pAiGPuEe7DNnIW7T4xvx3cNNJFvgJOM1ScZq08yVpfW8q33qWLr
BnDBwkU0naPGzer5H9Nr4zIW7dxCmKMCRa+n5o5xvukj190g00eEZuh0OkYP60mndqG8uXEnr63N
1q2jSZMm/OMf/6CoqIhx48ZdtnARdWerdLHqnc/otH4pi3ZuJcRWiqLXUzlqjHf6yOAhMn1EaIZO
ZcL1fRg7vKc07TeFToc7dSgVqUOp/H9/xrJsMdZFC7AuWYh1yUJcVw/3NfOPGQ8hIf4erRBCCKGa
p2PkgI60ahbMW+t38tqabMbd2IXbB3aUpv260OlwJfejNLkfZf/vRSxLF2NdtADrewuxvrcQ53UD
phYuK4FVZ/23uxnGIs7l8eBcv5GKf73CL3Zv993UIZqqR3+Kc9pMvF27+XmAQpxf8oBonnkghVdW
vc38o8dCUJCvRyuEEEKopk6Fy4gRIxg+fHj1/xsM/t+Eq0luN/aP1lP671f49d4fvTe1iKT8oV9i
Z7N2636OF1cxY3QsJmPgN+37i9KhA47Zv8Tx+FMNC3F8/hmm77/FGx2D48xCHF26XvSxhBBCiEBz
nzoTT9t2Ph6gEBeX2COSP92fxCurMlmz7SAnC8qZMTIak1FeL+pKadEC25zfYJv9eM1CHF98jumH
RT0uNpstAt+Vlnl2u33ZhY51uz2KUd6wXJpTp2D+fGpfnUvI0cMAHI9NIubZX2O4+275VFUElNIK
7/BERmE7txBHm7aXfSwhhBDC31xTj0tZWRkPP/wwd999N2PGjLnksS6XG6O8YbkyZ87AO+/gePV1
J39euI38Q6XYerTldzOuom2kxd/DCh579sDrr8PChVBWBgYD3HknPP443CTN/EIIIQJO829AabPZ
go4fBeBkdAJRT/8Ww113yaeqwq8Uldp5ceF2dh8pomeHpjw1oz9Nwy2+Hlbg2LcP3ngDFi6E4mIw
ugNrgbl2u33BxY6XHpeLazSPvaYGp8nMF7E3wGOPkjL5Vn8P77JoNeNgEkgZu9we3v4wn2/zCmkX
GOCOO2D2bLhZmvmFEEIEjjoXLidPnmT27NlMnjyZiRMnXvZ4rc2d09J4zqk1j72yErvJzJfRQ+Dh
6Wva79FR+037gZQx1dVY1qzEsmAeptxsANwDbA39byptNnslAirfACUZq08yVp9krC6t5XuhHhd9
h0iaeKuvh3dVtJpxIPGnjJ0uN+9u3M13OXk0C/c27Xdoqf2mfX/KmIoKLKtXYFkwH1N2JgCuHj1r
Ux7QZrN1BD4Gnr6UokVcgMOBefk7tLn9BtqOuhnLe8s53a4Tb974Ex57YhHm+W8GXNEixLlMRgMP
+t9U2mz2WvhVvn5KMlafZKw+yVhdWsu33pvzz5w5w5QpU3j22WcZOHDgFd1Ha4FoZjznVg5aOB9T
jx3EpBv6UFJew5/fSSN9d5G/hxVcQkNxPjCdss1fUrrpE5yT7sFwYD8Rz/wP7RJiCf/NLzDs2unv
unfloOLWHfmw5618lziMafcOoE+nZj4e5NXTVMYByt8yVhSFT74/wqovDxJk0vPgmD4k9Yj09bAu
UQohhBBN1tRVxV4G7gXyz7p5tN1ud5zvPnLFpTH9wQNY356PZfkS9KWlKHo9jttGsdJ2G6sNPYlp
yd8yBrzN/D9ux7pwPuZ1a9A5nXhCQqm86x5sM2bh7tXb1yOs5pf5+hnJWH2SsfokY3VpLd96L1zm
F8bsyQl0bh/m13E2lRYyDnaBmnGavYh5m/KodXmZdEMf7him3ab9QM34DF1REdali7AsWoDh2FFA
zp3Lxo0b6dKlS/Vt8+fPx2K5+PQPrQXi6/HoDx/C+u47WJa9h76oCEWvxzZsBCt6DmOVoSNRzUKY
W3s8BXq+gUAyVp9krD7JWF1ay7fZl0NuCilcAK+3YXfszZ/U747tvH86BROm8q/vSjlyspKBPdvy
MzGO1s1DfDrOutJCxoHOXzNO2ZPP/A05OJweJgzpwqgB2m3a99eMz9Hl52NdsgjLogUYThwHtLXH
2F1xhFsDd+NIrf0SBKNAzvjQiQrmrM6mtKKG4YM78dBomyab9gM540bcbkI+/gjrgnmEbN0CgKdj
k7/n6w8kY/VJxuqTjNWltXzrvXCpC60F4pPxeDw1u2Nv2VS9O7b9vmnkjpvMv78v4tjpMnp1bMrD
J5xnmvk7dfbLsIImXw2TjNUnGatPMlaX1vJt9qli4vLoSkuwvjaHdlcnETX1bsyffow7ZQjlr71J
d8YQavXfjSO19ksQiPw54yOnSpm3KpOi0koG9mnF9JE9Ndm0788Z1+JyEfTZp1gXzCdo21YA3C1b
ccYush/6OX/YXMiRk5XcmNyVX9yTGNBFixAX07NTBL+fPoQ+XSL5Nu8Ef1uewemqWn8PK3gZjdTe
YT/XzN+qtU+GFTD5aphkrD7JWH2Ssbq0lu+lChd9A46j0dIVFWJ9bR7NrksgYvJdmDd/hiupLyWv
MZbTq9ZT8k0a1bMeRVddTdg//o92KYOJeHg6pm++ghb6IEsIIYRoCrnioiJjVgaWBfOwrF2FzulE
vUVB2i4yp/+KP2/J49jpMm5KbMuv747366JFiMvp2CqMZ6f1pUubcL7LOcXfl6Vxttzh62EFLqMR
sVhwTrwb58xZuBOSAPgu7wQLPsjH4/Uy9dYB3JzSVbPTZi6H1qr3YBQMGde6PCz8MJ/vdxbSPtLM
x6jbObvyIwq/TaFi1kPoKioI+effaJbUh7AHpmH69mtomM+xhBBCiDqRKy4qMmakYVkwH8ualejs
7MmJdI8J9/ew6gVDxudVWYll9XtYF8zDuKtuM9vYgThmzKLm7ntRwtVfPCGo89UIyVh9krH6JGN1
dhSLBfv4u7DPnIUrLgGA73NOseCT3bg9Hibf2oOhSW01O23mamiteg9EgZCxw+lm4cbd/LAzj+bh
aS1fmSp2DlWfIKcT8/o1WBfOw5SeBoCnV28cM2bhnDIVpW07ALyKwtqt+3n/20NYzUYeu2swcb3b
ZuZMjKd9VKivh1UtEDK+qLIyLKs+xLpgPsZdVZvZRvfCNmMWlXfdgxKq/uIJAZ2vRkjG6pOM1ScZ
qzMmP9DaL0EwCpaMFUVh07eHWLt1P2aTgUfGDyK5f7S/hwUET8YXpCgYv/8O68I3MW9cj87txhse
q0tr+cpUsQuo+gTZ7Zg/Wu1ttk9NAcDdqTO2GbOwT5qM0tTbaO9RFNZsO8jH3x3Bajby8J19iOnc
Qc09U3DMfATPAJtq37pV5OtnkrH6JGP1Scbq0lq+FypcmroBpTiH/vAhrIsWYFm2GH1xMYpOR83t
XJ0x+YDWfgkCUaBkrCgKG747wpptBzGbDDw4tjeJ3bXRtB8oGV+SomD84XusC9/CvP4jdC4XntAw
o3w72994C+gbZuXV1Hp4a9NO0nYXEdPGylN3B24TvhBXSqfTMW5ELzq3C+WtTTt5dXUOk2/sy6ir
Ku+ehG3mg7h79FTtWzeKfH1MMlafZKw+yVhdWsv3UoVLnTagFD+lP3oE66IFWJYuRl9QgKLTUXnb
ewTF1UfN0+lwDxtOxbDhVP6xEOs7b2NZvBDrgnlYF8yj9trrccyYRe3oMWCUPxlCCCH8R/4KXQmv
CO/O9jfdAvqaWXmVDjdvb9hJyt58oppYefwu/23CF+Ja6XQ6xgzqROtmwby9YSevrspi4k1dGXFd
F9Pnn2FdOI+Qjz/yNdu3a0f1Ez/HMX0m3p69fnCXknInc1Znc7iwktgebfjZhHjpZxECGBIbQ3Qb
h4C4+qh5Oh2uAQMpHTCQsr/kYX3/XSyLF2JdMB/rgvk4brgR24xZOEaOBqP8yRBCCOE78lfoWng8
K3NWZ7Py830UnKpi2qhYTEZpxWspSseOVP/qaaqf+hUhH77ve237aishX23F07kLzmkzcDzwEErH
mL74HOvC+QR99qm32b5ZMyoe/RW2aTPxdOz0k7sUltiZtyqTo3llRHdowiPjYqWfRQigb3QUkU2s
jv4eqhBCiFZIpoo1ga6sFMuKpVgWvoXxwH4AXCmpvrnhd04Ey4/vCr6/oJxXVmdzuqqW6xO78MDt
zFuVyYovDpB7ppypI6IxGaUVr6EoLVtS8cQfqHj8CYI2fux9bft6G0Ffb8Pdug32qTOw3T8dpWVL
AzAagvNNmdYuOwajYM24rLKGV1Znc+B4Bf26RfHExHgiQ0P8MpZgzfhyGHbbsS6ch/nd5egrK1BM
Xw9VCCFEIyRTxepAV1yEZfkSLAvfxnjoIADOpGTv3PA7xsNFloU+mFvCK6syOVvu4Mb4Ntx/Ww+M
JmrGjscx4xHcVw+DK7gqJvmqTzJWn2SsPslYXVrLV3pcztHUJ8iYk+Vrtl+zEp3DgWI2UzNhMo6Z
hsB8U6a1y46BKFAzLi6r5JVVmRw6WUq3dhE8Oj6W8OAgn4wlUDO+Goa9e7x7wnywDH1ZKYrJROXt
s3AnpVzwvt/vLGTBB7twe7xMubk/tw7pFtTTYLT2SxCMgjnjWpeHBR/sYtuuk3SIsjB7cgLdolu+
Y7HNeBDXdQPgGq6KSb7qk4zVJxmrTzJWl9bylR6XC9T1CTJmZXib7VevQGezoZjNVI6biG3mLFwJ
aT+YM75cusoKzCvfxbpwHsb8XQC4B8XhmPEwzkn3QPjlPz+Sr/okY/VJxuqTjNWltXylcDnHZT1B
SZe87w8781jwyS5cbg+Thnbn1r7tAnoajNZ+CQJRIGfscLpZ8Mkutu86TYsIC3MmxtEusuGb9gM5
NTWYN67DumAeph3bAPD06IXjoZ/gnPoASrsLN9R7FYUNXx1gw9cHsZoNPHpnHPF9gqcJ/3y09ksQ
46ulKyvFvOIDrAvnY9y9CwBX7xhsMx7APuFuCL3650fyVZ9krD7JWH2Ssbq0lq8ULhe4qieoshLz
jII9Y0VR2Pj1QdZ9dQBziIGfjh9MUr8OLTqGYM+4SRQF07dfY1kwD/MHG33N/BGROKdMxTljFp5+
+rVYF8zHtGM7AO4OnbBN/wX2yfejNLt0Q71HUVj39SHWfXMYq9nAQ3fEENslcJrwL0ZrvwSBKNAz
/S/5oSRf9UnG6pOM1ScZq0tr+UpzfhPojx7xNai+8zb6U6d8zfa33o5zxsPU3nwbGC6+WV6Ny8P8
VhSF9d8cZu3XhzAHGfjl2D4kdGvRoGMI9IzrRFEwffcNlgXzMX+y3tvMHxaOfdJk7DNm4e7W/Yof
TTvZYS8iuo2F2ZMT6dpBmvCFuBQ6nY7x1/amc4cw5m/aySursrn7pn6MvKp7UF+t1DydDteIa3GN
SvJVn2SsPslYfZKxurSWrzTn14H++DFvg+r776I/c8bbbH/rbdhnPIBj6DAwXH6zvEqnm3c27GTH
uJaqE8exLPE184fOe4PQeW9Qe/1NOGbOovb2UdLML4QQolnJX5WzKQqmL7b4dpf++EN0Xi/etm2p
nnwim1iYMzGeti2kCV+IK6HT6Rh7Q2datwjhnQ07eWVlJnfd3I3h/dsH9NVKzdPpcA66AeegGyg/
/tlsX7N97z6X/FClFTXMWZ3NoRMVDOjehscnxBHhp3n6QgSyobExdIiy8MrqbN7bsreuad8WtP1h
dRLLe95m/uD5bxI8/00cN96MbeYsHLeNkGZ+IYQQ9Ur+qpxPUTB9udW7u/RnG9F5PHiaNqXikTne
gcTbqTPV//MM1T//NSEfbvK9dm7dQsjWLXi6dsM5fSaO+6ejRGtjeWshhBCBTaaKAbrTZVjeXeZr
ZvvOXa74oYpKK5m3KpMjp0rp0b4Js8fFEOajefpC+LN+0VG0iLDwyqpMPty6v6ppv2fA9of5E0+r
tt+3FwBXYjKOmbOouWsSWK2X9fgHjpczZ3U2pytruS6hMw+ObH1vsrR22TEYtbaMG30Y0C2KxyfG
1lT87k9U/Oq3BG3c4H3t3LaVoG1bcbdth33aTGz3TUOJ1Mby1kIIIfybTBUDdGeLsXyw1Ntsf2A/
q/5hQGvLuDkYdu30NfOvfBd9VaWvmX/cXThmPoJ76FWNmvklX/VJxuqTjNUnGatLa/lKj8s5zjxB
AM74RGwzZ1F55wSwWq/q8Q+dLGHeqkzOljkYHNeaKcMb35ssrV12DESNLeNaHwa0i2D2+FjVPwxo
hrxcrAvmYVn9LrrqapSQEGrunOhrtk8Z0qTVcrbtKmT++74m/Htv6sdtQ1vntBat/RIEo9aYcY3L
bBnXB8Ound5m/hUfoC8v8zbzj7kT28wHcfXrX6uZX/JVn2SsPslYfZKxurSWr/S4XODcE2TIyca6
w/z3d7Ej39e0/9TkBLqq2LTfGjNuLrqKcszvLce68C2Mu+0AuOIScM6chXPi3RAaKvm2AMlYfZKx
YD6WVR+gq6hACQqi8o7x3mb7pL51Wi1n+6483vnY24R/z83dGNavcU5r0dovQSBqjBlXOt288/Eu
+iRjdWktXylczuZyEb31Y1wvzcH0/bcAeLr3wDH9JzinPojSoWnNv4qisOHrg6z/6gCWukbixBZu
duz2Nu0/PjGOtio27TfGjOuLrrQE84fLsC58G+PePQA4Y+Kwz5yFffxdEBws+TYAyVh9krH6JGN1
JNYSrf0SBKPWmvHZC15YQnwLXiT0VWfBi9aacbNSFExfbcW68C1CPtyEzuPBG9UG55T7Cf3VUxS1
aS1fKVzO53QSue0znP+Zh+mH7wBwt++AbdovsE+egtKibs2/iqKw7pvDfPT1ISxVjcTxDdxIrCVa
6eTvEQY1OYfVJxmrTzJWl9bylcLlLGEvPk/onH8BUHvTLThmPkLtrbdfUrP9+Zy7dKvanwIHAq39
+yUIRI014/MXvLAEeRe8iOuqzoIXjTXjeqUomL7ehnXh2wRt3IDO7cYT0QT7pPsIfuJx8pu08vUI
EgSj1p7x2UuMq3V1s7Vn3Nz0Bcd8i54seRt90Umg7nV4xixqbxt5Ra/D4sfJOaw+yVh9krG6tJav
A5qcw+qTjNUnGatLa/lK4XKekLnPETzv3wA4br4F28wHcdx62xU121/MhUu3qv0psD/Q2i9BIGrs
rCp2lpo7xhLaPoqSkePw9Ol3xY9XWlHDq2t8m+X1r5t376/N8oRoTa4e1JHoNlZeWZPNis/2UlBc
GZ+/xLhaVzcbe8b1TZ97wrvoyXvvos8/DVS9Ds+YhWPY8Gt6HRY/T85h9UnG6pOM1aW1fGVVsfNU
HdSbugYDb5euVP/vs1T/8jeY399A5JIFhGzZTMiWzXVXvmfinDqtyVe+hRBCBLdW9xfenTIEfv/7
jrqd4OYRFA4fg7tLt2t+vKLSSl5d7d0sr3vVvHtfbZYnRGNyXe+WRDax8srqTJZ/vp/cgoqA3tQ1
ZilaDp39p+/VAAAgAElEQVSo4MXFOzhwvIJr4zvz6ynJUrQI0YL6dInkuWlD6NExnK1ZBfxzRSaV
EHjatKWwa2ZNAAAgAElEQVTij09T8ZvfY/54HeHvLSBo6xaCtm6puvI9E/vkqXW+8i2EECKwNbq/
Dpe/hyUuJiSEmgmT4csvKdnyDY5pM9EXnyL8xedpnxRLxOOPYEzbDi00I0AIIURgaHWFS3PZkX+S
8K6kvvDss/VStBw5VcrcxTs4dLKUG2Jb89tJiVK0CNGAurQJ55mpfenQMpRtGbn8a3k6ZTanr4cl
v7yTRllFDffc1I8Zd8RiMkqcQrS0dpEWnrk/lVRbNPYjZby4aAcFp6r8PSxxiTyD46j8x0sUZ9up
LicoiMpxE+Grryjc+i22qTPRF5whdO5zNE+IJmz2gxhTfoSGmRAghBDCTzS6wqW+7Nh9mr++n0Jx
/NNf8fToiWXlCtqOvoU2t9+Iefk74HD4e5hCCCE0QN5pXybfbt4HmLsuF51ex5OTExh1dY9WuXKY
aSV339yNGaOiMRklTiEaWrNwC3+6L5nknpHsOVbM3EU7yD1T7uthiSvk7hND2T//Q0HmHspeeAl3
EFphDjHw2F1xjB3Ri5NlDv60ZAc5+4v9PSxxGZTIKByzHqP06x2UrVxPzeixGHOyiHzqZ7RPtBH2
h45YViyn6chbaHLbTZiXvQ82m6+HKYQQQgPknfZV8u7mfYjX12aj0+t4bGIcI67r0ChXDhNCK8xB
h9+hP7Df38MUQgjhR1K4XIZal4c3N+5k7ZcHaB9p4XcPpJLUilcOE0JL9DodE6/vwyPjBuFyK7y0
Bh6+M4bbB3XidLGNF97bQdbBAl8PS1wFJTwC26yHKfpmB8UrPqJy5O0YszIIf/wRmsf3JOTPT6E/
MotPdhyhpRYgEc1Ep8N1w02UL1pGyY4cqn7+azAaCX39FdoNSybyvkmEfPIReDz+HqkQQogWJoXL
dNDXwxRCCOFDUrhcBYfTzVvrd7Lmq0M0D7fw1P3JJDTilcOE0BK9Tsf4G7vw4JjeOF0K/1mRwaYd
JSqrrOGvyzL4fmch/bpG8dz0IXSLad0rhwmhRcMGd+Lp+5OJCA1h+ad7WPJfO26P19/DEk3g7dad
x2ig9UdEfdHpcA65mZJFSynckUX5r34LRiPBb7xCswGJhN87gaBNn4Lb7euRCiGEaGBSuFyh4rJK
6t/+nuKMXZTPnYd7yFWYN39C1P330O7qZKyvvoyuRK6sCSFEayGFyyU4dKKCFxbt4MDxckbEdeJ/
Xlqaxg878+jWNoJnpvWlXVTjXjlMCC0a0KcVf7gvkbDgIJZt3sd7/9uDy+3x9bBEHXjatafiyWcp
7ksmMkya8IXQqr5dovj99CF0jwnn88wC/v1eljTtBzKzmZrJ91L2/ieUbv4SxwPT0RcVEv7H52if
SNtFyevzcfXtj3nLJiLuu5tm1yViffVldIVyZU0IIRoLKVyuwJFTpTy/aAeHTpYwKKYVv7s3kfAQ
GEvEk49izEjz9yiFEEKoTAqXi0izn+QvS31N+Hff2JefjBkoTfhCBIB2kRaeeSCF5P4d2HWolBcX
acIXQqu6tong2Wl9aR8VyhfpufzfhxnStO/PzGYqJ95D8cebKNryFbb7p6HPzyP0L8/QPD6asMce
7+B4sTTtBzp3fCKV/3qF4qx8Kv/4ZzxdumJ5dxltR95Em5E3Yl6xFJxOfw9TCCGECuQd+HkoisKm
wpiW4utRCiGEUJkULpeRsuc0f13ibcK/66au/GJ0L2nCF8IPNAu38Kf7k0js3oJdR4qYu3gHJwuk
bw7y2tpcdOh4YmI8o4f1lCZ8IQKIJcTI4xPjGTO8JydLHby4OI28AyX+HpZoBkqbtjgefYLSb9Mp
ad/fuWLjKfv3KxRk7KbsLy/ibtMWywdLaTr8ZpoMvwnz8iVgt/t6mEIIIVQg78AvQlEUNnx7mNfW
W7GGmlF3YMzKJHL2Y7RPiiXsj79Hf+igv4cphBCiGUnh8iNcbg/zNu1kzdb9tI80+z61HRDt72EJ
ZKNDx6PjYxk5oKM04QvhRyxBRmaPj2X0wI6cLrIxd3EKOYcKfT0sUQ+UJk2xPfQoRd+lUrx8NZUj
IZpAr9Mx6Ya+PDx2IC63h3+/l8XmtKP+HpZoLno9rptvpXzxCkq2ZVE9+5eg0xH66ku0uyqRyAfu
RmHMSCd8zsM0T4gm5C/Poj9y2NfDFEIIUY+kcPkZTpeb+Rt2snrbQZqHm72f2vaI9PWwhBB1oNfp
wfTZJ+CVPichhAh0Uric43RVLX9blsF3eYX07RrJs9OH0qNjhL+HJYS4QiPiOvObqSmEW40s/WQ3
mDCkKw/c3guny83/fZjBlpTjvh6WqC96Pc6ht1KyeDmF2zOomPMb0OkIfvU/NOsfT/j9d2P6fBN4
Sz6Wpv1g4+3Rk6pnn/c187/6H9wpqZg//og2UybRblgy1rmvoCuVK25CCBGopHA5y+HCCl5YtJ19
pM9JCCH8nRQuFzhb7uDvS9P4PiePrm3DeXpaPzq0DPP1sIQQ12hQTGt+PzmJUKuRJZv28t5n0rQf
BeUMH9yR39yXTJQ04QsRNPp1jeLZ6UPoFh3OlvRj/Pu9LKqc0rQfdCwWau65j7IPP6P0ky9wTH0Q
aDwdOlL+9HPeZv5X/4srKRnzZ5/SZNIEmg1IxPr6K+iK5IqbEEL4KylcznM0r5TnF/3IgdwSBvZp
/YnjhD//O9onDST8549jzM709yiFEEJcJilc6mTsLuIv76RTUl7DpBv68PDYQZiMBn8PSwjRzDpE
ye/vTSRCmvCFCBjd2kbw9LS+tIsMZWvqCf7vwwzK7dK0H3AsFirvvpfijZ9TtOlLbJOnoD91ktDn
Wfntgykk9TvTtJ/GiZJqfw9LqMSdmEzlS6/5mvmf/xPemI5Yly2h7a3X02b0LZhXroCaGn8PUwgh
nqJ5Qi9CfzUbY2a6r0cphBDiKknhUiVtbz5/fT+VwpJKJgzpwgO398ZkNPh6WEKIetYiwsqTU5JI
xCVo9YWLoih88N0hXl2Tg4LC4xPiGTO8lzThCxHELCFGnpgUz+hhPSgsqebFRTvYeVCmEAUzpW07
6HauaT+FU4UVvh6WUIkrPpGy/7zmbeZ/7gU8US2xLn2PprfeSJORt2BesRwqK309TCGEEFeg0Rcu
HD97kpLvMzm9fBU1t43EmL6DyMcf8TXzv/g8+iOH/T1MIYQQF9CqCxeX28v893ex6vN9tIkw88z9
iqLwyfdHeHV1FgoKs8fFMnpgJ2nCFyKAWYKMPDohlpEDOpBXWMHcRTvYeVimEAUypWkzbI88RuEP
qaTapAlfiNZAr9Nx9439+MmYgdS6Pfzr3Sy2pEvTftDT66m95XbKl66k5PtMqh9/CrxeQuf8i3ZD
6ZxdtpLKYcMxpu4gfPaD3mb+uc+hP3bU18MUQghxCY26cHG6PLzz8S5WfnGAJmFm/nRfMsk9pQlf
E4icNgXTls3SzC+EEBpkbOodbTabHpgLJAI1wMN2u31vcw1MbeVVtby6Joe9x07Tp0skT06MJyrc
iMZAr9Nx103d+MXoXjhcbv79QQZbU6VpP+Dp9ThuuY2SJSso/CGditmPg8dD8Lx/06xfHOFTJ2Ha
7O9hCSFa2DXxnYlpa+XVNTks+Xg3BaeqmXJrPwz6Vv25Tqvg7dWbqj+8QNVvfot5/RqsC97E/NEH
ukWa+YUQQoPqXLh4PB6effZZ7rnnHqZMmcKRI0fqc1yqKyl38I9laXybfYoubcJ5dlpfOraSJnwh
mD/6AHefvjhnPIxzyv0oUW38PVQhhBBc2RWXuwCL3W4fDvwv8M/mGZL6DhSc5oVFO9h77DRXD6pr
GpvrY1vzu3sTCbEaee+zvSz5bC9uedPaKHg6dab8z89TkL6bknlv4IqLx/zpJzS5ZxxNByVj/e9r
wpeiRYhWq3+3Njw3bQhdo8PYnH6Ul1ZmUy1N+62H1UrNlPsp+/gLSv+7Bee9UzEcO0r4c8/QPjGW
6M4W+3qYQgghqtS5cNm8eTMOh4MPPviAJ554gr/97W/1OS5VHco9y/OLdrD/xFmu613VhB9q9vWw
8F/NxpCb4+9RCiFEq3clhcu1wEcAdrv9O2BIs4xIZfbDpTz96pcUlzuZcH0fHhk3iBCTNOEL0dp1
hBA+0r1dE56Z2pe2kSFsST3Of1ZkUiFN+42H1UrlpPso/uxLiv63Ffs9kzGcOE7oM3+ieXw0oU/M
aGPltw+kkti3PXkHSnhxcRoFpyr9PSzRwtzJqVS88gbFmflUPvdHvB2isS55m3Y3X0ObsbdjXrMS
wZCd5etRCiFEo1fnwiUlJYXBgwcDkJCQQHZ2dr0NSk17jhbxh1e/oqDEzrgbu/DgmN4EmaQJX4jG
amv9PUyhAW6Plw+/P0TuvlP+HooQl6+yEtO3X2N9bQ789rcBs0iJTlGUJt3RZrO9Bay22+0f1v33
rkUTK0/en0x81+bkHCpk7uIUcs+U+XpYooG5EpMpfeVNCtJ3U/bMX/C0iMT63rs0G3o9TW6/DfPq
YaCP3W53/9jxbrdHMWpgla5F7+9k41f7+cV9KVyT0MXfwxFCaIzHq7Do/Z2s/Xwv4VYTzzw0lIR+
FeBw+HqYQgNcbg8bfzhC9oEzvh6KEFevrAzTd99gfW0ePPmk3yxSolMURanLHZ966iluu+02hgwZ
0vvWank88OGHMHeu71+AmBiYNQt++lPo3t2/4xN+UVFdy/8t2k723lOMHtGLn01K9PeQhDi/2lrI
AsBNN93E5s2bMRqNP3u8y+XGqIFVuhZ9vJP1Xx/k1/cmcX1cG18PRwihMW6PwqKPd7Lmi/2EWk38
yYFt22D7dt+/u3Y19PKZTJCXB/37+3ecDc67QtaVFC7/Ar6z2+3v1f33Ubvd3u18xxcVVTTtGzUz
aXo/4rpJ71uj5XbDxo3w+uvefwGiomDWLPjlL6F9e9+OT/hEaYWDvy36kcz9Zxg5qBOPTIj39ZCE
RVGIjAqlotzh76EEtejoCIqKKvw9jKAmGavry+wClvzXjqLA/bcP4Makrv4eUtAJtHNYf2A/1rfn
uDiHA7KyYPt2+PFH77+7dtX08plMkJMD3bv7dpxXoM6Fy1//+lfi4+MZNWoUADfeeCPbtm276PH5
Y1m+BH1ZGYpeT+2oMThmzsJ13Q2gwdUoAy3jQHC8uIqXV2VzstRByoBonnnoKnlPoTI5jy+D14th
+aV1G2E9UxSF8IhgSktsvh5KQIuMDNPMcx6oJGN1fZWZy3v/24OiwH239eCmhLa+HlLA8bdzWH/o
316MGWmYMtIwZqZjzM1Bd9YVFSU0FFdCEu7kVNzJKUSOuoUii3Z6+aKjI877Ytrk5nzga2Ac8J7N
INZ338Gy7D30xcUoej2OEaOxzZyFc/AQ0OBqlP6WsT84WVDOyyszOV1kI6lHJH+a3l/eU6hMzuOr
ZhsGBMQEYJ1Oh8VsRE5/IcSFXJfQBVvvDry44HsWf2Sn4FQV994sTfutmbd3H6r+35+oevp3WNat
4PFgOLAfY1oKprQUjOmpGLOz0J13RUUJDsYZl4ArMRlXYhLhI24h39LEh4OuLTLy4j3nP3955Aok
xrJgHuYPNmL+YCPufv19zfz3TkWJjPL3UIVK8g6UMHddLo4aN2OG92TC9X3kPYXwH0VBX3AMY0Z6
JSWxdetWRo0aRXp6Oj169KjrQzUonU6HxWxETn8hxKUMjmtDz84tmLvgBxZ/uofcM+XcM7QbBn2j
Q5GSmYG+orzhEKMR96C4+iLFlZSCZ4ANjGeVANERECCF4ZVccTmzqlgCvks6M+x2e/75jtfKFReQ
XoyxUfN07kL5/3uB8j88hWXtKiwL5mP+ZD3mT9bj6tYd+4wHsN8zGSU8wtdDFSrJOVTI62uzsVW6
yr0lSMbqk4zVFx0dQd6ek8xZlU3BqSrierfj0TvjCLVcyWc+4oyAP4cVBWPadqwL5mHesBZdbS1K
GD2wI+Nu7CLvKYTvKAr63BMY01JripT0NPSlJTWHGI24esdUFynOhCTcPXrC+TOkIsPATwrDOl9x
aBjOyffimDkLz6DB/h5h4GesIZvTjrL80z3o9TpmjI5leFwnQDJuCZKxj660pFGRYkpPQ190stEx
8Xg8PPfcc+zduxdFUXjxxRfp2rXrRY/XUqUslbv6JGP1Scbqi4wMI2ffaeatzCT3TDkxnZvx0B0x
7n79cSel4EpJxZ2UgjsuASyWCz6u1vK90BWXJhcul0sKl9ZFMlafZKy+Mxk7atz8Z0Me2fuK6dw+
BFvq/JmPOI/fn8OKgjHlR6wL5mNetwadw4ESHIJ94j3YZs7C3buPr0fo/xlryJaU4yzbvA+9XseM
lKcmJxDTNtTfwwt4wXQO64qKsCxfgvXt+RiOHgGgdtgInDNnUXPHOAgJ8cu4giljf3F7vCzfvIct
kdEMjGkFSMYNQTL20hUV1ipSTKkp6PNP1zrG1a07roQknEnJuBKScMXEgcVyycfVWr6XuuJS58Ll
6ceIDDXxxKQE+nVtuKomGauvVWZcXY0xOwtTZlrdtK90DAcPNDrE06Vr4yIlMalJy7drLV8pXM6h
amktEC2NJxBJxuqTjNV3LmNbpYv/rssh80ABrZsH8/jEOKKaBvt6eH4vkM5hXX4+lmXvYX33HQzH
tScoGEnG6pOM1Xd2xl6vwntb9vLx9iOEWYw8MTEeW4+2fh5hYAvKc9jjIeST/2Jd8CYhn3/muymm
jwHgGDAI+8xZVI4aA0FBPhlXIGXsKy63h2Vb9rE19QThwSYenRBHt7Y1V9UkY/U1yowrKjBmZmBK
I84HH8I5bQbezi27KExQZtyCqpwu5q7NZdehUrpFhzN7cjwdoqyNjpGM1Rf0GbtcGPN3YsxIbyhS
T6ma9pWK4fChWoe427StXaTEJ6BEXP2UL63lK4XLBbT2BAUiyVh9krH6zs/Y41H4cOt+PvvxGCEW
7LvQeTz1h3jbtPEVKckpuJOH4E5OwduxU7N8e63lK4XLObT2BAUjyVh9krH6fizjrVm+pn2AB0fa
I4+Oj6Vnh6Y+HqF/C8hz2O0maNP/sC54i6AvPvfeFNUS+5Tp2KfOwNO6YReFCciMG1C53cnra7LZ
uD5RVidsqmA/hw379mB5ez6W5UvRl59GMRiovWMcjhkP47rmuhZp5g/2jNV0oqSal1dlU1hSTXL/
daSIdpGhzJkYS4sIa61jJGP1BXzGTifG3TsxpqXWFCl7dqFzu6sP8TRp4i1SEpNwJfbFlZiEp2Wr
DswaNwhLyA+niUrG6guqjL1eDAf2+YqUuulextxsdE5n/SGK1Yo7PrGuSEnFlZSCt3cf1V4ztJav
evn2WstXCpcLaO0JCkSSsfokY/X9XMbbMrxN+wBThvfkxnhZnbCuAv0cNhzYh+Xdd7AsW4K+5CyK
Ws35QgjR6lyf2IWOba28uiaHtz/Mp+BUFffc1A+9XnsrSgn/8vTtT9UL/0fV/z6HZc1KXy/MxnWY
wYBj1BhsMx7Aef3gBmnmD/SM1XSqsIKXV2aSV1hBYvcWzBrTG0vQT6eJSsbqC6iMPR4Mhw54i5Sq
N67DbYvF8dDD1NwzBSUi0t9DFefYebCEuWtzqa5xc8ewnky8oQ96Da4aJ7RPf+I4xvSGnhRjVgb6
6V7G7Ex0dnv1IYrViis2vqpIScaZkISncxfVXjO0lq8qzflCCNEY3RjfhpZNrby6Oot3N+4m90w5
02X1X1cMBjyxg+qne7mSU/HEDmzcPC/qyRUXoQrJWH2SsfoulPHJUt+nsceLq0no256fjh+M1Sx/
d9/cDb1eeytKCd9yd+1O+fN/o/yPz2BZvcLbC7N+Leb1a3H1jMY2/QEq756EEhbu66GKC+w8XMjr
aC5HqzuHFQXj9m1YF7yJeeM6dC4X3rBwau6ZgmPGLN+blWbW6jJuBlvSj7L0kz3o9TB9VCzXxHe+
a7KpqHQxakBHxg/pgl6Dq8YJ7dOfOokxtaYnxZiRhv5scfXXFYMBd3Tv6ulezsRk3NG9ajfPi2py
4PGSsfoCJWNdWSnGzAxMmen1074MJ443Osbdu0/DCl/JQ3DHxUOof3smtZavTBU7h9aeoGAkGatP
xUWoQjJWn2SsvktlfLrI+2nsyYIK4ro255dj+2A1yx+aq9HozmFFwfjjdqwL3sK8fi06pxNPSCiV
MlbfxTKudrp5Y30uuQdK6NohjCcnJxDTxnre40Vjrfkc1p08iXXpIiyLFmAoOAZA7TXX4Zg5i9pR
d0/CNmOW981KPWt0GdeDranHWbJpH3o9TBsRzfWxrS95vGSsPn/JWFdchDE9DVN6avW0L8Opk7WO
Y3wbwjWD1pzx5fJ4vaz4dC+b048SEWriiYnx9O928UZnyVh9mszY4cCYm+1b4auuSDHu39foEE/H
cXXuUrPCV2JfXDGxEOzbnkmt5StTxS6gtScoEEnG6pOM1Xe5jCvsLt78KJvsQ4W0bRHCYxPjiGpi
To2WIXYnJaO0beenAZ+f1vKVwuUcWnuCgpFkrD7JWH2XkrHH6+Xdz/by6Y6jhFt9b3YGdNfORl5a
vejxorbGfA7rTp/GumQRlkULMOSeAMBx/WBsM2fhGDHauyFcPWjMGV8tt8fD8s372ZJ6nLBgE4+O
Jucw4HYT8t8PsS58i5CtWwDwdOrc0Mx/hc23kvGlqXa6eH19HnkHSugWHcbsSQl0uMQPISRj9fk9
j6V7u8s3OkvG6tNkxjYbxuxM7wpfVUWK8eCBWoe4W7aqtQyxKyERpWkzHw344rSWrxQuF9DaExSI
Y7cbgz2/oUjJTMe4Kw+d211/iDcyCndiMu4UX0+KOyW1xRfjaCq/53sOKVzOobUnKBhJxuqTjNV3
JGP1Scbqu5KM3R4PH3y+n807jhNq9b7Z6dFeOxt5aZmcw4DLRdD/NmJd+DZB27YC4G7VuqaZ/xqb
ORl/nnGMpZ/sBmDaKBvXJQTGHyx/knO4McOe3VjefgvLimXoK8pRjEZqxozHOXMWrmEjmtSYKxlf
byXjK1Nhd/LGRznkHCqkXWQIcybE0eIKP4SQjNXn84xdLgx7dtcUKempGHfloHO5qg/xhEfgik/E
XGFpNS+vzOZESTWJfdvzyGVO+5SM1deiGSsK+oMHfNO90tN8/+ZkoauubjjEbMYdl9CwDHFyKp4+
leTtSXElJTf4Yhx15fN8LyCFywW09gQFIslYfZKx+q4m4y/STrBk014Apo7oyeA4//iD5UtyDtdm
fSFANyjW2jkszflCCKGyG5O70rFdKHPX5rDwg3yOn6pm8o19pWlfXDJP/wFU/elvVD3zeyyr38O6
2LcXy7tvY1m+FH1pCYrRSOXosdhnzsI5YFCdGnMl48vLK6rg5RWZnCqsIL5rcx68ymmfkrH6GjRj
YB6W9WuwrF+De+BgHDMexjn5XggP9/dQg8auQ6XMXZtDldPNqKt7MPkG+Z1tbXSFhXU9KTsw1V1N
RUF/+JB3uldqivffrAx0FRU1h5jNuGLiapYhTkzG3aUr+OkGxVo7h6U5XwghVHZTYltaNgvm9TVZ
0ZeW1n9d0evx2AbWr/DlTk7BPXBws03nFJdHrrgIVUjG6pOM1deUjAvrllBt6qe3rYmcwxehKJi+
LPxkNyfPVDDxpq7StC+umLt7D8pf+Dvlf3oWy6oPsS6Yj+Wj1Vg+Wo2rVx9sMx7APvEeCA319VAD
/xbLgjcxb9qAzu3GGxGJ8977cD70MJ4Btos+hGR8fmdfJZ0+KpZrEy7chH8+krH6mitjXflpjFmZ
xq4jRby+Jotyu4sR13Vg4hD5nW1sdHl5VT0pOzBVXU3RFxVVf13R63H37FW9wpcrMQlXrz71Np1T
jXafNxw72ugYT89ejfZKccUnQljYFX9vLdPaOSxTxc6htScoGEnG6pOM1dfUjM+eL981OoynLmO+
XB254iJUIRmrTzJWX10yzqtaQrWun942JnIOX4aiYPrhOywL3sK8YR06lwtPWDj2e+7FPv0B3D16
fGsi5/Cl0xeewLLkbSyLF9avUlR73Q04ZsyidtQd5106VTL+oebuS5OM1dekjJ1OjHk5DcsQZ6Zj
XvYhJOOLO/8q6bQR0dwQd+km/IuRjNVXXxnrSs5izEivtfu84cTxWse4O3aqtVeKMzYeQkKu+Xtr
2LsH3Vnve70dohuWIU5JxZ2YgtK+fTOPXvu0dg5L4XIOrT1BwUgyVp9krL4ryfjcFYoenyBN++eS
mdbOYZkqdgGtPUGBSDJWn2SsvrpmfP58+baRITx+FfPlGxM5h6+cPu8UlvfexbJ4YfUqRY7BQ7DN
c7gJXC5CPvoA68J5hHy1FQBPl644p83A8cBDKDExjQ6XjBs7dyXA2ZMTiL7CDxUkY/VdNGOPB8Nu
mIVjxKiLLp0qGf9UffelScbqq1PGdjvGnKyaZYjTUzHs34fuvLe9nhaRNcsQJyXjik9Cad68nkev
u69IOdNAvzMXnctVf4g3PAJ3UnL9Xinu5BS8Xbu1yEawWqe1c1gKl3No7QkKRpKx+iRj9TVHxpe7
fVo7h6VwuYDWnqBAJBmrTzJW37VkfOEKRbPHSdP+heQcrgOnk6BPP8G6cD5BX28DwN2mLfapM7Dd
J0RrIufwlTHY87EunIf5vRXoKytQTCZqxt2JY8YjuK+6GnQ6yfgsau29JBmrr1HGioL+8KFGe6WY
Px0lKqrW4ZJxbReuBDhnYhyR1/ihgmSsvstm7HZj2LvHW6Sca6DfmY3O6aw+xBMahishsXqvFFdi
sjLRVVfVH6+EhOCOi/cVKUkpuFOG4OnXP2Cb59WmtXNYCpdzaO0JCkaSsfokY/U1V8Z5B0t4vW4X
Ep627RpkI1it09o5LIXLBbT2BAUiyVh9krH66iPjq90TojGRc/jaGPbsxrpwPuYPl6MvK0Uxmagc
7tFX92CSNAADcg43F11lBeb3VmBdOA+jPR8A9+B4HDMeJuKnMylyaObPr9/YD5fy6hpfE/7tQ7tz
cwe2GQ/i6n8d6HSS8XnU2ntJMlZfrYwVBf3RI7X2SjFlpKOrKK8+XgkKwhUT6y1SEpJwJfXF3a27
z039mu13UM5jdemKiuhwYBdVn3/lK1Iy09EXF9d/XdHp8Ayw4U5uWIbYPXAwmM1+HHVg0do5LIXL
3zbPq01r57AULhfQ2hMUiCRj9UnG6quvjHMOF/JG1S7cI6/rwARpAAbkHK4vurJSzB8ux7pwPsY9
ObT2BAUjyVh9krH6mjPjEyXVvLwyi8JSB0n9OvDI+EFYQlp3076cw81MUTB9+zWWBfMwv78BnccD
uwFw9YnFNuMBwn45k3xbg/yZ17Q9R4t4dbW3Cf+2fu25++Zu9fY7KOexunT5+bQ4tIvyL772Finp
RiOugYN9S7bW7S/hscWetycmGG3NKmDJf+0APDjSxvWJzbtUuZzHzUdXWYExOwtjXU+KKSMNw5HD
qegLCqq/ruh0uHv0xJVYswyxq1cfMJt9OGr/orVzWAqXC2jtCQpEkrH6JGP11WfGpworeHlFBnlF
jY7xdO/hm+p1pkhJSEQJj/DTiIOD1s5hKVzOobUnKBhJxuqTjNXX3BlXOV3MXZvLrkOldIsOZ/bk
NhK6teDBsb2xBDXupn05h+uZomD67hssC+Zj/ngdOrcbjEacvfp4l2yt2l/C3TP6oj0xgWhbRi7v
eDpEtd6mfTmH1aM/cRzLkrcJ++pzlPR0dDU19V9TQkNxxyfWfzrtSkrB26t30M3193oV3tuyl4+3
/W8PAFOG9+TG+PpdqlzO4/qjKyvFmJmBsaonxZSWguHY0VrHuNt38E71OlekxMWjhF78ja64PK2d
HyHcauLxCXHYerRt9u8j53ET1dZi3JnbsFdKRhqG3fbGzfPt2+NKSsF87QhODxiMKykVJTraj4MO
w1K4XEBrT1AgkozVJxmrr74zLrc7eX1NNruOFNEuMpQ5E2NpEdF4m/blHFaP/tRJLO+9S8jXX6Ck
Tlo7h6VwOYfWnqBgJBmrTzJWnxoZuz1elm/ew5b0Y0SGmnhiUgL9ukY16/cIFHIOqy86OoKighKM
pqKrrKz+mhIcjCs2vvrTaWdCEp5OnQNurr/Ho/Dh1v189uMxQq0mZo+LoWeHpvX+feQ8riOHA+PO
+TvP+hQ7HUP+TnReb/1x3rZtz2pa9hUzSseOfhz5lXHUuPnPhjyy9xXTpa4JP0allf3kPL4EXi+G
7Jq9UtJSMOzdU7t5vnlznAlJmG8YxNkefXAmJKNERvpw0IFJa+ewFC4X0NoTFIgkY/VJxupTI2OX
vXt8U73qliE25uagq62tP0QJDcOVmFS/V4orORVv9x7Sq9UCtJavbEAphBAaYTToefB2G13ah7H8
28OyLfvYmnqC8GATj06Io1vbiHr9Hv5CzmH1RUaGkZ9biHH3zvM+xU7FsHsnOo+n+jhP06bnNS17
0z38bVk6M0YPZHhcJ38PTQQrkwl3fCLu+ESYPtN3W1UVxpzsujeRaZjS0wjZspmQLZvr7+bp2q3R
ixmlZUsfjvza2Cpd/HddDpkHCmhT1YQfpdLKfnIeXwGPB8P+fd6pXlXLEBuzs9A5HNWHKMEhOOMT
CkzupGSUiEg//RCX7mSZgzmrsik4VUVcn3Y8Oj6OUIu83WkxioL+2NFGe6UYMzPQVza8MVZMJtyD
qvdKcSYm42nfQXq1GoDW8pUNKIUQQiOMBj1TbutJm+YhLNu8j78vTWXGyF4MjGnl66GJQGUy4YqN
4hqWIU5K8e1LZDD4ceAiEMhvshBC+MEtqd3o1C6UuetymbdpJwXFVUy4vg/6IJuuIzQqLAz3sOG4
xxUbD9Nmem8rL8eYlVn1JjIFU2oKQVu3ELR1S/Xd3G3b1VqByZWQiBIW7qMf4sqdLrYxb2UmuWfK
hw2vv0lXUlx/RebM3hfm9zdgfn8DUNcE3a+/74pMcoqvx2BwPFgs/vopfmD3kTJeXZNDpcPFbUO6
ienSjIfGxhBskbc7DUZR0J84XmuvFGN6GvqymjfGismEq3dMzTLECUnefYkMBh8OXPgD+U0WQggf
c8/NfTHISlKqanTeZKRhykhHX3Sy0THu/gOoTRpTX6Ro7bwRgUMKFyGE8JPBvdvx7LRUXl6Vzfvf
uCW5Ha2aBfP62mzmb9hJbkE5427sgj7ApusIjQoJwTVgIK4BA6tv0hUWVF+RObf3hfnjdZg/XgdU
HqLgVBWzxknTvvAPpV17XDffhuvm2+puUNAXHGvUg2DMzMCyZzmW95b7DjnzyXlywzQzT/8Bfvnk
NUF36+69IpOY5O0x6BMLFouvfoqf2HusmFdXZ1FmczKsb3vuHtoVg6wkpapa501aCqa0VPT5p2sd
/MusAhbXNeFPG2XjxqSuLT6GoFdVhSknq24Z4h2+aYeHDjY6xNO1GzVjxjdcqUtMQolsndNhRfOT
4+reA0fC6OoiRWvnjfAfUrgIIYSP9OncjKenJvPyykw+/u4IuWfKmTVGmvaFbyjNmuMcOgzn0GFV
HhehCslYfZKx+loq40qHi7lrc8g/XEaPmHBmT06gXWTwfxop57D6mj1jrxfDvr0Y03c0FDPn9Cp4
Nyjoc0/U6kEwpqdh2bcMy4fLvIec++Q8sWaambt7D598cv5VRi6Lq5rwp47oyU0JbRt8DAGvvBxT
w8JxJyT+aK+CGrxehVWf7+OjbYcJsxj52YR4BvZs/ib88wna89jlatwblZ6Gwb6rcW9UmzYNV+CS
VkbVMsQ7vNMOjxyudYi7bTsqR4+tuVIXn4AS3jinw4r6Jz0uQhWSsfokY/U1VMZlNievr8li99Fi
h6jWGxW0GWuE1vKVHhchhNCwcKuJX96bxNJPdvNFZgF/XLSDJyfG07eVNu0LDdPr8fQfgKf/AGru
OkSFMmdiHM3CA//TSDmH1VfvGXs8GA7sx5i6o6aYuaBXwRMSiisu/md7FdTg8Sis/OIAn24/SojF
neq77czqUGf1NJi++4aQb7+uv5u3fftGS9i6klJROnS44uE4aty8uSGPrH3FdG4fyuzJCXRsG3rF
yCPjYunVsf6b8C8mYM9jp7N2b1RqCoY9u2r3RjVpUnMFLrGvar1RAZuxRmgtX+lxEUIIDQu1mvjN
j9vqeL0YDuxrVKQY83LQOZ31hyhWK+6hVwf9anRC26RwEUIIDTAa9EwbaaNLhzBWbN7DX5dlMPOO
PQks2bSXL9Nz+cuiHTw2PpaujbRpX2iYXo+7ew/c3XtQec9k723nVoc6r6fB9P23BH33TfXdPM2b
WIYNlqZ9oXEhIb6CJCkF54yHgbP24zjT95CZjvnTjzF/+nH93a50P45TZQ5eXp3NsaIqBvdux2N3
11rC1pmQjNKixTUPx1bp4q11OWQcKKB182DmTIyjZdPga37cRsfjwXDoQK0ixZiThc5urz5EsVpx
DibUYmr2Hy8Y6Y8XnDUF0NfTpC8/Xf91xWCob54/c9Wste3/I7RJzkAhhNAInU7HbUO606ldKG+s
9bsu4FejE9omhYsQQmiA0aBn6vCetGkRwvIt+3hpaRozR0UzoI807QuNCwryFiQJSdhnPACctx/H
z+XNjTspKK7mrut6S9O+CChKeASuEdfiGnFt/W26U6cwZaY1KmYsG9bChrW+++h0eGyxvpWmzhQz
ub6H9FTMmz/DvPmz6rtd634cZ4ptvLwqkxP55fTp3IyH7+hDsMVU7z9eINKfzD1vCqC3p0lfcrb6
g+IgJOQHj7/7SBmvrc2hotrFLandmHJLP2nCPw9dWSnGzAzf1bC67A2FJxod4+7Tl9rbRjb0KsUl
64rBUN08f+6qWWPb/0dok5yBQgihETqdjmF929OqWTBvfpTNW+t3kltQwZ2DO0vTvvArSmgYzkE3
gLX17jEltEsKFyGE0Jj4Pu353YNDeHlVFpu+Ocjx4ioeHjMIc4gsFSoCl9KhA7W3jqT21pF1Nyjo
4Bx0Q/VtujNnMKWn1CpmLOvWwLo13vvodLh7RntXmjpXzPSOgaCgnzz+3mPFvLYmi9IKJ7ckt2PS
jxxumJqUmY4pMwNj/i4sK5b6DgkJwR0X32iPma2OcBZ9vBuvFx4caeOmZGnCr+dw+Ja5zkyrn/Zl
Ld2kCf8idMVFGNPTvFfDqrI35J2qdYyrS1ccw4bX9CrFxIG18e4xJbRLChchhNCY2C7NeWpKX15e
3L+v0SGeTp2pGT22oUhJTEJp03I9QUJcCSlchBBCg7p0COO56UN5bU0OafYiisrSmD2pdTTti1ZC
mcGGbw9zsqCcB0b3xhwkS4UK/6W0aIHj1uE4bh1edYOC/tjRmqlJ6amY0tMw7t6FZfkS7yFBQbhi
p8Pboye1PXpSO36C7zaPB8Oe3XXFzA7fG++cbEzpaViZB8BtIaH069yPyBtGEHW0HHe0F2/Xbq2v
YmvtMbPNFsqiz/bi8cCU4T25OVGa8KvZbN5lrtNTqqd9GQ8eqHWIu1VrKkfeXlOkxCegNGm4niAh
18LtxpC/q2GRhIx0jLvy0Hk89Yd4o9pQe/1NDcsQJ6fg7dzFj4MW4srIqmJCFZKx+iRj9WkhY7fH
roUULkIIoUFtWoTwzLR+vLY6i5Q9+eQXpzBnQuNo2heNhE6Hp0NHHB064hg7znub241h396qYmaH
yzsf29madZyosBCenJRAny7a3wTwUmgh32AXFBk7nXgys9jxzgdYczMZWLSPzqeOoDvr/Ys3OqZu
9413Viam1BSszAdgWFAw3Vp3I3zIICKOl+CK9OBp267x9Vq4XBh276pZJCEtFeOuHHRud/Uhnogm
ZauGPWaUdu1bZHgtkrGioD+wv74nxZSRhjEnC53D0XCIxYI7LqFRkeLp3ReCYApdUJzHGqa1fGVV
OG68uWYZ4sQkPK3b+HDQQlwbWVVMqEIyVp9krD4tZOxye3j/sz1syzhJREgQj02Io0sb7W8CeCW0
MSGECFBGg57po2Lp0iGcdz/bw1+XpTPzjoFcPaj5lxwVQotO1SjMydNxtNsNDLr2LvreFUexy4Ex
kG+gC4iM7Xbc6RnseP8TrNnp9Mo/QOszx9Cd9/bFExlVtbJVzR4zSrPmDTK8BslYUdAfOljdk2JK
K7PRHjPmjz/C/PFH9ffz9OxVv0yvOzkFV3wihIX58Se5dPrCE3VN82m+aXRZGehLS+u/ruj1eGIH
S8GYlYHOZqs5xGLBFRNXq0hxd+4KATCFLiDOYw3TWr6yqpgQQvgpo0HPtBHRtGkRygef7+OlpanM
1Rdr7uQU3LGDwCSLE4jgJoWLEEJonE6n4/ah3enUzsob6/P4z4Y8jhdXMf5aadoXwW3vsdO8ujqb
HNWL63rX/5KjQmjRmUqFeTk6jrcbQu8b7qTrnTEUOG0YM9Jr7TFj/uxTzJ99Wn0/d8dO1cv0uhKT
8moXN6V05b5b+mM06FEsJlzXXo/r2us5c81BV1hYX8ScWZbZsm4NrFsD1L3Ztw1suCKRkqqJN/u6
cMbGQ0iID3+SK6fPO1XVNJ/inUaXkYa+qKj664pejzu6d3Wx5kpMwhXdG0yyOIEIbFK4CCGExul0
8tMYMzMa7T5vKDjW6BhPr944b7zZd0UpKRV3fELAFGFCNCcpXIQQIkAk9O3A7x5M5eVV2Wz4+iAF
Om7r155Wzay8+VEO/12Xw8mCcsbeIE37IrDtP3GWV1dlUlLh5Oakttx7S3eMBj2KxYTzhhtx3nAj
xdX8ZMxAzCZp2hfB55vc47z9YT5eL9x/2wBuSe12weOVjh2pHTma2pGj625Q0B86WL+a1pnpVcZd
56456PLyqouYc8syW9auhrWrgao3+z171VyRSErWxJt9XclZjOlptXafN+SeqHWMu1Nn7DcN9V5R
ebB0se8QiwX34PhGxYyq06ucTox5OXXFVV1vyt49jQ7xRsdQM3J0w4IEScktNu1NCK1rUuFis9mi
SkjGFRvnN0WYEPVJChchhPATcV1b8NSUZF5emcm6bw6TW1DBL0b3wmySpn0ReL7NPsm7G3fj8cB9
gHeASCAE+KXdbv+2OQcmhBDih7pGh/Pc9CG8tiaHHfknKSpzMHtSAm0jzP4emhDNwqsorN26n/e/
w3pwS3K7Sx6vtGyJY/hIHMNHVt2goD9yuHo1rXPTq4y7cmDJYu8hFguuPrG1ihlVp1fZ7RhzsqqK
PUSo2chjd8UxuHe7y38gnQ5vr97U9OpNzYTJvtvcbgz2/Ib9SzJ807BMadsbvn9kVMP+JXXFTJMa
q6relP37ah3iiYyicvjImgUJEhIbbNqbEFpXp8KltLSU3/3ud5SVleF0OvnjH/9IYmJifY9NCCHE
2j0eDLvtjVZNM+7MRedyNXyv8Ahqr7vhrFXTUvB26dr6FhoQ4hI19YrLL4HNdrv9JZvNZgOWAynN
BdpGhvLMtL68tjqLHbtPk19sY86EOJqGmX09NCHqhUdRWLPtIB9/d4Rgs5GH74yhT+dmV/9AOh2e
NywhhBDnExEawq/vS2bxR3a+yjnOHxdtZ/akBHp3Do6mfdF6OWvdzNu4k4w9p+jY1srsyQl0bt+M
Tp2p7NSZynETvbe5XBj27K7ZvyTNOw3LlPJjzfcPj6jZv6SqmKlTQ7vbjWHvnlqrphl3ZqNzOmu+
U6KMRjyD4/AMjoP7p/luczgw5mb7ipm6AiNk6xZCtm6pv5unY6f6XpL6qyBnLyGsKOgPH2r0GKas
V2gYjsFDzls1LQlPm7aNb6EBIa5QnZrz582bR3h4ONOnT+fgwYM88cQTrFmz5pL30VrTj5bGE4gk
THTVVQ2HhITgTkg8a5+aIXj69guK5nkhWkpTC5d/AzVnPYazeYYjhBDiUhgNembcEUuXDmGs3LKX
Y/VJxurTcsYut4fFn+7h66yTRIQGMWdCHJ1b+1fTvpbzDRT+lrHd4WL++p2k7TtDy6ZW5kyMo3Vz
vy5NZ+aYgVw1UJr2RWAqPu1kzupsjpysZGDPtjx2Vxzh1hboP7FacQ+9GvfQq+tv0p0ua+g7qStE
ladE2WwYszO9xcy5AuPA/lqHuFu2qu4lqb4KUrWEcGRkGPmnS9AfPVLrMUwZ6egqyqsfQwkKwhUb
zB+9j/mj9+uPcffugzspGZzVtN+2DX1xcf3Xzmym6Sty6vppBg7+0c00hRCX7qLLIdtstp8Avzjn
d94+NX1xd+0WEM3zavO389jfaC3fem/Onz59OkFVG0K53W7MZvmkTwghGpLRoGfGqGjatAhhxdb9
5hl2u327zWbrBHwI/Nxut39xocdxuz2K0SjzsIUQorlt23mCf7yzA0eNh6kjY5ly2wB0MtVEBJD8
vLQklZmje9G/lzTtC/9UcNbOvFWZHDtdRq+OTXn4zhhCrQ3Qf2K14up3Ha5+11XfpDtbXNN3UlWI
QyX8aeE2yipqGDW8Fz+dEI/RoLErEQUFsH07bNvm+3f7digr832tVy+46ioYOtT3b0oKhIf7dbhC
mD/9GPOnH1cf4+rcBVdCItgraL59O/qCguqvndtM01vkVPXT9Orzs5tpCiGu3GWvuKxYsYJFixbV
BLDz/gFr8j4uNpstHlgB/Nput394seNlH5fWRTJWn2SsvkDK+OjJSuaszubUaSdXDYxh5h0DCdF4
uu3FF18kLi6O/Px8Zs2axZNPPkn//v0v+Y1cLjdGo8zDFkKI+rZ95yn++f4ObJVuJg+PZtKwHuhk
034g5RuoAiHj7/JOsOCDfDxeL/fd0p9bUrsFRuFd1/zfvldnipCNYdUUCOdxINNavhfax6VJH2fY
qonwI7uPFPLCwu0Ul1YyYmAnfjkuFqNBY1cicnPhxx9h+3bvvz/+CMXF3q916gT9+0O/ft5/k5Ig
bLZBwEpg6qUULUIIIdTVLSacZ6cNoV+3KLbtOslfl6VTVllz8TsK4SdeRWHN1n28uXEnJqOOX9yd
NNSnwxUiENV5H5c9e/bwm9/8ht///vcMGTLkssdr7RKUlsYTiCRj9UnG6vOnjI+fLmPeqkzOnLXT
yK1DugdG0QL1zf9ER/t7JEK0Gk29DvsXwAK8bLPZPrfZbOubcUxCCCGaIDIshP+Zksw1cZ04cLyC
v1cUM0f1IkjjTfv+lK+/8oeMv885xYJPduP2eLj3lu7cktzOPwrvqub/5p1ak49sDKsmfziP/ZnW
Fxbt4NAJ7XyKJsQZNbUeXl+by6ZvDhHTxsrvHhxCXB9Z8lcIcWFNas632+13NvdAhBBCXDmTUc/M
8r3UVLE6fZyxf/9+Hn/8cf71r39dUdEihBBCXe2iQnl6al+6tYtg+67TvLQ0leKySl8PS4iL8igK
MQPpEh3Gqi37+Ms7aTw8dhBDYmP8PTQhACgp9zXhHy6sJLZHG342Ib5lmvCFEAFPY51vQgghrpRO
q7cd4K31OzEZdfz6rnhu7dveP4oWqG7+JzLS1yMRotGoU4/Lv/71LxwOBy+88AIAoaGhvPHGG/U6
p2P01T15YlI8Op2Ouety2fj1AZra0yhEc9lfUM4Li3ZwuLCS6xO78Mt7k6RoEUJcMilchBAiSCX3
MCGEEFcnPCSI301KZPGnu/km+xTPL9rBnAlxdGx18U+vhPCFSoebtzfsJGVvPlFNvE34bVrIviRC
j+a3D6bSPtLM2i8PMG/jTmpdHn8PS7RS3+8s5K/L0imvrmXKLf2ZPsqmvZXDhBCaJq8YQggRxLrH
iEurU+EiRYoQQmiTyahn5uhetIkMYeXWA/z1/RQeuL03faOjfD00IQAoLPE24R/NKyO6QxMeGRfb
hPPs9KH07RrJdzsL+dvyDE5L075oQV5FYd2X+/nPhjwMeh1PTU7k9qEB1IQvhNAMKVyEECLIRYWF
ME34Qgi/p7HONyGEENdKp9Mx8rqOPDohFp1Ox+trs1n/zSHq2NIoRL05mFvC84t2cDSvjBvj2/Cb
8Jv7khk+uJNvqs7iHRwulKZ9ob4al4c31uWy4euDdIiy8LsHU0noK034QoimkcJFCCFaAZPRwMNj
exKkaBFCXDEpXIQQIkAldo/kySnJNA83s+arQ8xfvxOH0+3rYYlG6oedeby0NJWSCgeTbunOtBE9
BzLphj6UlNfw53fSSLMX+XtYIoiVVtTwf0vT2WEvYkC3KJ6bPoSu0bIpoxCi6aRwEUKIVkKn0zFm
tbdymBBC0+QVQwghAlj7qFCentaPrm3D+X5nHn9flsZZadoXDcijKKz96iD/XZeDQa/j8Ynx3NbP
eC8enxAPwGtrc3j/24PStC+a3YHj5fxx0XYOnajg2oTO/Pq+ZCJCQ/w9LCFEgGvScshCCCECV6ot
j5rwhRCaIYWLEEIEuIiQIH5/byID+7TyTtVZvIOjedpZ+lIErkqnmzfXZrPum8O0iLDw1JRk4ro2
mug2qcxZnc3qL/ZTcKqKh0bHYjIa/D00EQS27Spk/vu7cLu93HtzP+lnEUI0G7niIoQQrVCPjhE8
9/WwhBB+SgoXIYRoBExGAw/c3osJQ7pQWFLJi++nkLIn39fDEgGsqLSSvy1JZceefHq0i+CZaX1p
N20IfbpE8m1eXdN+Va2/hyUCmKIorP/qAG+sz0Ov1zF7cgIjr+ohRYsQotlI4SKEEK1UVLiZp6cm
GymbMgoh6k4KFyGEaCR0Oh2jB3Zi9rhYAF5bk8XH3x2Wpn1R7w6dLOEvi37kyKlSbohrzW/vTSQs
M2xQR/YdK+fFRdulaV80Sa3Lw3825LH+qwP1TfiJ/Tr4e1hCiCAjhYsQQrRiJqOBWeMGMeH6PhSX
OMjXwxJC+Lk6LYcshBDCfyX3jCSySTLzVmWy6suD5J4pZ/rIaExGg6+HJgLA9l15vPPxLlwuD/cM
1/CXd9LJ2CNN++LSlVbU8Ndl6WzbdZL+3aJ4dvoQukkTvhBCBVK4CCFEK6fT6Rg3ohc/uysOBYVX
7Sb9LEKIeiNXXIQQohHq0DKMZ6b2pUubcL7LqWraL3f4eljCjymKwkdfH+LNj3LQ63XMmRjH8P4d
V+fw4XeHpGlfXNShExW8uHgHB45XcE18J349JZlIacIXQqhEmvOFEEIAMCQ2hug2Vuaszmbl5/s4
pGgRQtQbKVyEEKKRigg184fJiQzo3ZIDJ0qYu+hHadoXdeJwuvnvuhw++vpQdRN+fLcWvh6WECLA
dqqK6aNiMRnlMy7xQzvyT/LWpp243F7uvqkvo6SfRQihMvlrJIQQol7PThE8N30IvTtH8E3uCf6+
SOEihBCNmMloYNaY3oy7sQsFJZX89f1U0vZJ0764ckWllby0NJXtu07TvV0ET0/rSztpwhdCqEAK
IoNyadoXZ1EUhY1fH2Duulx0eh1PTIpn9NU9pWgRQqhOChchhBCNtAk38/TUFK4aGMPeo6d5YdEO
FyGEaOR0Oh1jBnXikTtjUFB4dVUWG78/Ik374rKOnCpl7uIdHDpZyvWxrfjtpETCpQlfCKESac4X
jp6s9PewhAbUujy8uXEna788QPtIM799IJXk/tH+HpYQopWQwkUIIcQPhJgM/HT8YO66rjfF5U7+
QggBQN/oKCKbWJm3KpMVXxzgxJlypo2IxmSUz7jET+3YfZq3N+zE6fJw181dGSH9LEIIlclfIyGE
9E4amXtP+XtYwo/KKmv467IMvt9ZSL+uUTw3fSjdY6QJXwjRcqRwEUII8aN0Oh3jr+nNY3fFoXgV
ENU6tgrjmWl96dw6jG+zT/GP5WmUSNO+OI+iKKz/5hCvr81Gp9fx6IRYRl7XUYoWIYTqpHARQghR
XlmVzUffH5am/Vbo0IkKXli0gwPHyxk+uBP/c18SkWHShC+EaFnSnC+EEOKChsbG0CHKwiurs3lv
S5NQM3+YnET/XlHsP36W5xft4PjpMl8PS2iAw+nmrfU7WfPVIZqHm3ny/mQSu0f6elhCiEZCChch
y2SkuSsAAAisSURBVF4KTlUxbZQNo0E++2oN0uxFzNuUh8vlZfKNfRl9tTThCyH8Q/7qCCGEuKje
hMgqyT0AAAqHSURBVBA/EWQy8MuxfbhzcGcKSuy88H4K6fvP+HpYwoeKyyp5aWkaP+zMo1vbCJ6Z
nSN5bvpQenWK4Kuc4/xjeQbl1dK0H8wURWHTNwd5bW0OOnQ8PjGeO4ZJE74Qwn+kcBFCCHFJ2kaY
1o/2UdKEL4RoOFK4CCGE+Fk6nY6x13fm4TtjUDwKr6zM5NMfjkrTfiN05FQpzy/awaGTJQzs04rf
efr+FIbExrD76GleXLSDo0XStB+MXG4P8zbtZM3W/bSLNPPMAymkDJAmfCGEf0nhIoQQ4pKZTQYe
3ZtAeIg04QshGpY05wshhLikftFRtIiw8MqqTD7cup/cM+VMHdETo0E++2oMUvbkM39DDk6nh4k3
vXMw46/pxanTTv68JI3sfdK0H0xOV9Xyt2UZfJdXSJ8ukTw3bQg9Okb4e1hCCCGFixBCiMuj1+m4
dWXkddKEL4TwDfmrI4QQ4rI6tw7nmWn96NQqjK+zTvLPZWmUVEjTfiBTFIUN3x7mtTVZ6NAxe3ws
67o+PHrnYDxehZdXZfPxNmnaDwaHCyt4YdF29hWUM2xwR56emkxUuNnfwxJCCECa84UQQjTRVQM7
owZIE74QwnekcBFCCHFFmoaZ+cN9SfSNjmLv8bPMXbSD4/nStB+InC438zfsZPW2gzQLN/On+5NI
Et3GypzV2az4bC8FxVU8cLs07QeqjN1FvLlxJzUuDxOv78OY4dLPIoTQFvnrIoQQosl6d/ZNJerZ
6iFN+EII35LCRQghxBUzmww8dEcfxl7fiTNn7bz4XgqZB6RpP5CcLXfw96VpfJ+TR5c24TwztS8d
MYKtWcf554pMKqRpP6AoisIH3x3i1TU5KCg8PiGOsSN6SdEihNAcKVyEEEJckXaRFv73/hRSbdHY
Wob5elhCCCGFixBCiKuj1+m4c3AXHrqjD26PwssrM/lsuzTtB4KjeaU8v+hHDuSWMKBPS/4wOZGI
j5Tx4uIdHDtV5e9hiUvgcnuZ//4uVn2+jzYRZp65P5VUW4y/hyWEED9KChchhBBXzBxi4LG7fJ/U
ULOvhyWEEIA05wshhKij/r1aEtnEyrxVmSz/fD+5BeXcf5s07furtL35vLV+J5VON+Nv7MLogdLP
F5U5+fOSHeTsL/b3sMQFlFfV8vcVGXyTe6Juuesh9OwkTfhCCO2SwkUIIUSz0Ot0TLy+D4+MG4TL
IoTQFvnrIoQQos46t/ZOJerYMoxtGSf51/J0SqVp368oisIn3x/h1dVZKCjMHhfD7YM6SdEihNAc
rfDSyiw+2X5EmvY16MjJSl5YtIO9R09z1cAYnp6aTBtpwhdCaJw05wshhGhWwwZ3IrqtlVdW57B8
KVyEEEJck2bhFv54XxLJPSPZc6yYuYt3cOJMua+HJa6A0+XhnY93sfKLAzQJM/On+5JJ7hnl62EJ
8x4Kiqu4/7YB0rSvEZl7TvGfjXnU1HqYcF1v6WcRQgQM+SsihBCi2fXtEsXvpw+hR0w4X2QW8K93
IcTPksJFCCHENTMHGXj4Tu8n9fnFdl58bwdZBwt8PSxxCSXlDv6xPI1vs09VLXfdl46tpAlfCKFd
M6l0uPw9rFZNURQ+/P4Qr6zORvEq/OyuOMZd01uKFiFEwJDCRQghhCraRVp45oFUUgZEk3/Y17R/
UrgIIYSoF3qdjvE3duHBMb1xuhT+syKDTT8ek6Z9DTp2uoznF+1g//Gz9O8VxR8mJ9JEmvCFEBon
vFia9v3B5fay4INdrNyyj6jwEP73gRSGxEoTvhAisFxR4WKz2WJtNttpm81maa4BCSGECB7mEAM/
zflCCCHq1YA+rYhsauWVVVks27KP3IJy7hvWQ5r2NSJ93xn+uz6HSoebcYM7Sz+LEMJvyF8RIYQQ
mxDHmOE9OVnq4MXFaeQekKb9llReXcs/VmTwdc4JenWK4LnpQ+nVKdLfwxJCiMvW5MLFZrNFAv8E
9a5rmwiendaXDlGhfJmey78/SKfM5vT1sBo1RVHY+MMRXlmVieJReOTOGMZc31mKFiGE35DCRQgh
appvOEIIIYKNXqdj0g19mTV2EC63h5fey2Zz2lFp2m8Bh46X8+KiHew5epqhsTE8fX8KbSOkCV8I
hCqahVv40/3JJPWIZPdRb9P+yQJp2vcFp8vDgk92sWLrASJCg/jj/Un0jZYmfCGEf7mmwuXAgQMk
EZia1Jxvs9l0wJvAb4H1zToiIYQQQWl4nK9p/9XV2Sz9ZDdHTlXRLjzE38MKWm6Pl81px3DUuLnz
JydTWVlZX+MRQggRQMxBBh4ZF8PogR05XWRj7uIUsg9J035DKqlw8M/laXyTdYpOrcJ4Zlo/OrUK
2t6Mv0aa8IUQgU13sU+8bDbbT4BfnHPzIWCF3W5fYrPZDgKxdrvdeaHHcbs9itFouIKhCiGECAYn
9/WwhBDiqtW5cCkrK+Oll14iKCioPscjhBAiwOh1OiYM6cqs23vjdLn5z4eZbEk5Lk37DeDIyRLm
S6p5YcH3HDxe7u+hBL0Qo56f35fCdUld/T0UIYS4VOf9hOWihcuPsdlse4Gjdf85DNhmt9uvv9B9
LtrBvuNn6RcdxR/uS6JpmDThCyH8U52a8xVF4ZlnnuE3v/kNjzzySH2PSQghRAAaGONt2n91VSZL
iooqNDMnIDo6gqKiCn8PI6hJxuqTjNUnGavH5fZQXO2mpESa9dU0qF8MuN3+HkZQk9cJ9UnG6tJa
Nu3l2JlymoXKh19qcbk9bEk5ga3SxR03dGbs9dKEL4TwbzrlMh95rVixgkWLFtW6rU2bNowaNYo7
vtHREectXJo0Vcxut/c78//rrrjc3pTHEUII0TqZjAbi+7ahKFL6LdQU3daqqTckQghxJWQ5ZCGE
77yToUOHsnHjRszmS3+C43K5MRoN1z5iIYQQfu10YQXPL/iBwydLfD2UgBdk1POre5MYnNDW10MR
EEIIIYTmNemKy9nsdnuvZhiHEEIIIYQQQpyXXHERQgghhBBCaJ4ULkIIIYQQQgjNk8JFCCGEEEII
QohrdtnC5ecMGzaMVq1aAZCenk5cXBxLliy55H3y80vrNkIVREaGaWo8gUgyVp9krD7JWD1Ol5uC
oXlNWg5ZCCGEEEIIIVqSXHERQgghhBBCaJ4ULkIIIYQQQgjNk8JFCCGEEEIIoXlSuAghhBBCCCE0
CheFhdKsr6be3aLA5fL1MAKavE6oTzJWl9byjYy8+Ea4dZoqtmnTpur/Hjp0KAsWLKjLwwghhGik
TwoX8f/buZcQK+s4jOPf0bGGRCnoYpHUyieIsIVQaU2zETEoImhXpEOFVHTZRA0ZFEUEZVAhlWlO
TEYDsV2bkB8u/RZqimxq1dQbEiGEuBayHLIQQgghhBBC8+p0xeV8n3/+eX2MQwghhBBCCCEuSq64
t0U3o1ykVEZZRCAu3PgMWbsuxHS1snKaFu8ZxpWTcOr/zv88HxiYd/dlOJxzfv/3905EREREROtl
CCGEEEIIITRPChchhBBCCCGE5knhIoQQQgghhNC8Oi2HLIQQQgghhBANSa64CCGEEEIIITRPChch
cImIiIiIiNbrLx3wf5I0B9gILAX+AK63/XnZqvpIugB42PZQ6ZbaSJoHbAHOBo4HHrD9VtGoykia
hBBCCCGE5knhIoQQQgghhNA8KVyEEEIIIYQQmieFy/9v515ComrjOI5/pxFvmQ1RrcSYAqFd1CZC
C2wCBEwAa20fKFtVJ0mnAnuAlbb3l+6pjaS9wE+dyy9try3ZUxtJdwNXAMcBG21vLpxUFUlrgDWd
oei+6DaNpEUSRpAIXRahDiWF4Si1iAKbKZDAIoOycqUURRcDkWiiwILIFo4hXQZkatC5vYsXXPoS
ywHgfGCR7R9LNdWm851ilOY7xQRwQ9vfi3vtjsuVwIDti4C7gEcL91RH0p3AszRvMtF91wDjti8B
TO8zPv4+u2f35czhHP7nPHNERERERCTraXAREREREZGsl2M64P+USqU4e/YsHz9+JDc3l/Pnz7Ns
VgNPFu6p0eUAtlcA9wIbyubUqfOB+TTwe+mWGkkaALA91PnJ0NJFkoaA5cAK4FJgcdGgCtneOvX6
2TLTWdZ5+/YtFy9epKury3SKdeLxOD6fj3A4zNTUFHV1dWzcuNF0llWSySSnT59mZGQEp9OJ3++n
pTnguDVDS9ddBvTbXg7cDzxYuGdGvTa4XAy8A2D7U2BZ2ZwqHQCuKh1RsVeB9UdcHy4VUivbbwI3
tLTUdJaVfvz4gcfjobOzkxUrVpjOsc7u3btZsGABACUlJfj9fsNFdgkGgzx58oR4PE51dTWVlZWm
di7PAr4tmFOzR4CngK9Kh1RqKXCCpJ2S3pd0YemgyqwC9gHbgLeB7WVz6iVpGXCu7WdKt1RoDOjv
k6zS09PD/fv3AZicnGR4eJiBgQGKi4sNl9kjHo/T2NhIOBxm3rx5tLS0ZP21eE4NLo8fP2Zqaoo7
bCQtBP4q3DOjXhtcFjJ92xxgQlJPrcv912y/zix44c9Wtg/a/kXSAuA14J7STTWyfVjSKPAEzd85
d+4QCoVoa2vj6tWrprOscv36dXp7eykoKDCdYqXe3l5cLhcXLlwgEomwZ88eDS4Z9vTpUwC6u7sZ
uqizAvKd7R2lWyr2G81wuApYB7yUz7uuOpnm8PNqpv++fWWTqjUC3Fc6olIHadbE9tOsSD9etOZf
HBzE7/frOvEXxONxmpubyc/PN51ipcnJSQA9QPpLBgcHefPmDbdv3yYWi9HZ2Wk6yToejwePxwPA
6LXB5WdgwRHXc2znxDpmFUmLgV3AC7ZfLt1TK9vXAUuATZLml+6pzDCwUtIHNHvrz0taVDapOmPA
uXPn2Lt3r4aWDHv27BmJRILu7m4GBga4dOkSV65cMZ01ozm1Vez169dUVFQAsGrVKt6/f2+4yD6l
i7YnbY8B48DphZtqMg7ssP2nbQOHgFMKN1VH0onAObZ3lW6p1B00r+MlNHdpR6fWTNuq105fPqbZ
paVZf9LPZtu2beP48ePTa6fTabDGTps2baKlpQWAsbExFi9ebLjITu3t7VRVVbF06VLTKVb68OED
X3+lc9t8X+GeiGMi6TRgJ3CL7fdK99RI0rXAmbYfojm1/pvmocXoEtuDU793hpd1tr8pV1SlYeA8
sViM2tpaampqCIVCppOs8vLlS8rKyqivr+fo0aOsX7/edJK13r17x6dPn9i3b5/pFOu43W6SySSp
4CZJZ9BsHHxdNqkqu4HbJG2gGQjn0wwz0V2DwLulIyr2A9NbMt8D84C55XJm1muDyzaaU75PgD4g
VIpoNEpOTva/z8j+wgyKRqMUFRVNr51OJ4lEYlb8ULPF1q1bGR0dNZ1hrfnz5wP/nsvHjh3jxIkT
DyvGbDMCnASslzT1rMtq23nAuXveAJ6T9CHNm/jttg8Vboo4VpuBrZJ2A5PAcDYMusf2dkmDwGc0
hovslJOTQ0NDA48ePeLy5cumc6zT09PDokWLqKio4Nq1a6ZzrJSfn8/hw4eprKzky5cvHDlyhL6+
2ys3284BR/cJ+KJ0RMUeA7ZI+ojmv+ON2P61cNNR9U1OTpZuiIiIiIiIOKpee8YlIiIiIiJmoQwu
Pt3vMiQSiTA2NkYgEGB0dJS6ujr6+vpwOBym06wTDAapr683nWGlwsJCwuEw27dvJxKJEAgETCf9
ERERERHRehlcIiIiIiKi9TK4RERERERE62VwiYiIiIiI1svgEhERERERrZfBJSIiIiIiWi+DS0RE
pzn1xqWoqIhfv35Nr1OplC7iMut8/fqVmpoadu3axY4dO0znWKu9vZ3+/n7OnDnD79+/TedY5d69
REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
e7x69YqDBw8yPDxMQ0MD3759M51lFbfbzc6dO3E4HLjdblwul45xBrlcLsrLy8nNzWX58uXk5eXx
8+dP01nWmZiY4PPnz6xdu9Z0ipVu3LhBeXk5/f39PHz4kMbGxultptlqTg0uq1ev5vnz5wCEQiHK
ysoMF4n8me/fv1NbW8upU6fwer2mc6z04MEDgsEgAAUFBTgcDm3Jy7Bbt25x8+ZNurq6WLlyJe3t
7SxZssR0llXu3r1LW1sbAOPj40SjUR3jDFqzZg0vXrwgnU4zPj5OLBbD5XKZzrLO0NAQ69atM51h
reLi4ukPeCxcuJBEIkEymTRcNbM59bph8+bNDAwMUFVVRTqdprW11XSSyB8JBAJMTEzQ0dFBR0cH
8O8HEfQH58zZsmULTU1NHDhwgEQigc/nIy8vz3SWyB/xer00NTVRXV2Nw+GgtbVVOwwyaMOGDQwN
DeH1ekmn0zQ3N+sBx18wMjJCSUmJ6QxrHTp0CJ/Px/79+4nH45w8eZLCwkLTWTNypNPptOkIERER
ERGRmcyprWIiIiIiIjI7aXAREREREZGsp8FFRERERESyngYXERERERHJehpcREREREQk62lwERER
ERGRrKfBRUREREREsp4GFxERERERyXr/ALLpGQK5/Mj/AAAAAElFTkSuQmCC
"
"
>
>
</div>
</div>
...
@@ -12264,7 +12272,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12264,7 +12272,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[
128
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[
4
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
euclidean
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
])
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
euclidean
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
])
</span>
...
@@ -12280,7 +12288,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12280,7 +12288,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[
128
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[
4
]:
</div>
...
@@ -12297,7 +12305,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12297,7 +12305,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[
129
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[
5
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
euclidean
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
5
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
12
</span><span
class=
"p"
>
])
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
euclidean
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
5
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
12
</span><span
class=
"p"
>
])
</span>
...
@@ -12313,7 +12321,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12313,7 +12321,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[
129
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[
5
]:
</div>
...
@@ -12327,6 +12335,81 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12327,6 +12335,81 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
</div>
</div>
</div>
</div>
</div>
<div
class=
"cell border-box-sizing text_cell rendered"
><div
class=
"prompt input_prompt"
>
</div>
<div
class=
"inner_cell"
>
<div
class=
"text_cell_render border-box-sizing rendered_html"
>
<p>
Another choice is the
<strong>
Manhattan or cityblock distance
</strong>
:
</p>
</div>
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[6]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cityblock
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
])
</span>
</pre></div>
</div>
</div>
</div>
<div
class=
"output_wrapper"
>
<div
class=
"output"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[6]:
</div>
<div
class=
"output_text output_subarea output_execute_result"
>
<pre>
7
</pre>
</div>
</div>
</div>
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[7]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cityblock
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
5
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
12
</span><span
class=
"p"
>
])
</span>
</pre></div>
</div>
</div>
</div>
<div
class=
"output_wrapper"
>
<div
class=
"output"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[7]:
</div>
<div
class=
"output_text output_subarea output_execute_result"
>
<pre>
17
</pre>
</div>
</div>
</div>
</div>
</div>
</div>
<div
class=
"cell border-box-sizing text_cell rendered"
><div
class=
"prompt input_prompt"
>
<div
class=
"cell border-box-sizing text_cell rendered"
><div
class=
"prompt input_prompt"
>
</div>
</div>
...
@@ -12339,7 +12422,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12339,7 +12422,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[
134
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[
8
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cosine
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
100
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
])
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cosine
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
100
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
])
</span>
...
@@ -12355,7 +12438,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12355,7 +12438,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[
134
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[
8
]:
</div>
...
@@ -12372,7 +12455,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12372,7 +12455,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[
132
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[
9
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cosine
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
])
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cosine
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
])
</span>
...
@@ -12388,7 +12471,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12388,7 +12471,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[
132
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[
9
]:
</div>
...
@@ -12405,7 +12488,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12405,7 +12488,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
33
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
0
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cosine
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
])
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
scipy
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
spatial
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
distance
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
cosine
</span><span
class=
"p"
>
([
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
])
</span>
...
@@ -12421,7 +12504,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
...
@@ -12421,7 +12504,7 @@ REREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[1
33
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[1
0
]:
</div>
...
@@ -12491,7 +12574,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12491,7 +12574,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
35
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
1
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
dtw_table
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
):
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
dtw_table
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
):
</span>
...
@@ -12524,7 +12607,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12524,7 +12607,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
36
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
2
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
table
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
dtw_table
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
)
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
table
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
dtw_table
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
)
</span>
...
@@ -12546,7 +12629,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12546,7 +12629,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
42
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
3
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"k"
>
print
</span>
<span
class=
"s1"
>
'
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"s1"
>
''
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
join
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
'
</span><span
class=
"si"
>
%4d
</span><span
class=
"s1"
>
'
</span>
<span
class=
"o"
>
%
</span>
<span
class=
"n"
>
n
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
n
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
)
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"k"
>
print
</span>
<span
class=
"s1"
>
'
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"s1"
>
''
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
join
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
'
</span><span
class=
"si"
>
%4d
</span><span
class=
"s1"
>
'
</span>
<span
class=
"o"
>
%
</span>
<span
class=
"n"
>
n
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
n
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
)
</span>
...
@@ -12628,7 +12711,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12628,7 +12711,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
38
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
4
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
dtw
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
table
</span><span
class=
"p"
>
):
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
dtw
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
table
</span><span
class=
"p"
>
):
</span>
...
@@ -12658,7 +12741,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12658,7 +12741,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
39
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
5
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
path
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
dtw
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
table
</span><span
class=
"p"
>
)
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
path
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
dtw
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
table
</span><span
class=
"p"
>
)
</span>
...
@@ -12675,7 +12758,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12675,7 +12758,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[1
39
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[1
5
]:
</div>
...
@@ -12722,7 +12805,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12722,7 +12805,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
44
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
6
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"nb"
>
sum
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
abs
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
i
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
]
</span>
<span
class=
"o"
>
-
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
j
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
])
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"p"
>
(
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
j
</span><span
class=
"p"
>
)
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
path
</span>
<span
class=
"k"
>
if
</span>
<span
class=
"n"
>
i
</span>
<span
class=
"o"
>
>
=
</span>
<span
class=
"mi"
>
0
</span>
<span
class=
"ow"
>
and
</span>
<span
class=
"n"
>
j
</span>
<span
class=
"o"
>
>
=
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
)
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"nb"
>
sum
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
abs
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
i
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
]
</span>
<span
class=
"o"
>
-
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
j
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
])
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"p"
>
(
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
j
</span><span
class=
"p"
>
)
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
path
</span>
<span
class=
"k"
>
if
</span>
<span
class=
"n"
>
i
</span>
<span
class=
"o"
>
>
=
</span>
<span
class=
"mi"
>
0
</span>
<span
class=
"ow"
>
and
</span>
<span
class=
"n"
>
j
</span>
<span
class=
"o"
>
>
=
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
)
</span>
...
@@ -12738,7 +12821,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12738,7 +12821,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[1
44
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[1
6
]:
</div>
...
@@ -12764,7 +12847,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12764,7 +12847,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
</div>
</div>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"cell border-box-sizing code_cell rendered"
>
<div
class=
"input"
>
<div
class=
"input"
>
<div
class=
"prompt input_prompt"
>
In
[1
46
]:
</div>
<div
class=
"prompt input_prompt"
>
In
[1
7
]:
</div>
<div
class=
"inner_cell"
>
<div
class=
"inner_cell"
>
<div
class=
"input_area"
>
<div
class=
"input_area"
>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
table
</span><span
class=
"p"
>
[
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
][
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
]
</span>
<div
class=
" highlight hl-ipython2"
><pre><span></span><span
class=
"n"
>
table
</span><span
class=
"p"
>
[
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
][
</span><span
class=
"o"
>
-
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
]
</span>
...
@@ -12780,7 +12863,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
...
@@ -12780,7 +12863,7 @@ $$ \mathrm{argmin} \ \{ d(x[i-1], y[j]), d(x[i], y[j-1]), d(x[i-1], j-1]) \} $$
<div
class=
"output_area"
>
<div
class=
"output_area"
>
<div
class=
"prompt output_prompt"
>
Out[1
46
]:
</div>
<div
class=
"prompt output_prompt"
>
Out[1
7
]:
</div>
...
...
dtw.ipynb
View file @
64d7a49e
...
@@ -2,8 +2,10 @@
...
@@ -2,8 +2,10 @@
"cells": [
"cells": [
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 74,
"execution_count": 1,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"outputs": [],
"source": [
"source": [
"%matplotlib inline\n",
"%matplotlib inline\n",
...
@@ -62,8 +64,10 @@
...
@@ -62,8 +64,10 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 123,
"execution_count": 2,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"outputs": [],
"source": [
"source": [
"x = [0, 4, 4, 0, -4, -4, 0]\n",
"x = [0, 4, 4, 0, -4, -4, 0]\n",
...
@@ -74,24 +78,24 @@
...
@@ -74,24 +78,24 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
127
,
"execution_count":
3
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"<matplotlib.legend.Legend at 0x11
ce5d91
0>"
"<matplotlib.legend.Legend at 0x11
75965d
0>"
]
]
},
},
"execution_count":
127
,
"execution_count":
3
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
},
},
{
{
"data": {
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAy4AAADBCAYAAAApSeRhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3
Xd8VGXa//HPtMxMKi2h9zIB0gMK2CsgRSkqooKw4uqq\nuO1ZH3d119/q7j7bFRVdERCQovRiWRVR7EB6Ahl6DYSQQtpMMuX8/piQEJQWcjJnJtf79doX6+TM\n5M53TiZzzbmv+9YpioIQQgghhBBCaJne3wMQQgghhBBCiIuRwkUIIYQQQgiheVK4CCGEEEIIITRP\nChchhBBCCCGE5knhIoQQQgghhNA8KVyEEEIIIYQQmmdsqW9UVFShmXWX27YNpbS02t/DCGqSsfok\nY/VJxuqSfNUnGatPMlafZKwureUbHR2hO9/XWuUVF6PR4O8hBD3JWH2SsfokY3VJvuqTjNUnGatP\nMlZXIOXbKgsXIYQQQgghRGCRwkUIIYQQQgiheVfU42Kz2WKANOA2u92e3zxDEkIIIYQQQojGmnzF\nxWazmYD/AI7mG44QQgghhBBC/NCVXHH5B/AG8EwzjUUEAbfHy7ovD3D0VBW1tW5/DyeohFWU0v1w\nPt0P59P12F5cfbsTcd1w3MkpuGMHgcnk7yEKIYQQQqhGpyiXv0qxzWZ7COhmt9tftNlsnwOPXmyq\nmNvtUQJp1QJx+U5X1vCXRdvJ21/s76EEPGutg76Fe+l/Yi8DTuyhf+EeOpYXnf8OFgskJ8NVV8HQ\nob5/+/UD3XlXFBRCCCGE0KLzvnlpauGyFVDq/pcE7AbG2+32E+e7j5b2cYmOjqCoqMLfwwgqx05V\nMWdVFkVlTlJt0Tw9/SrKT2tnTXBNq6nBuDMXU2Y6pswMTBlpGHbb0Z31u+lt3wFXcgqu5FRcSSkU\n9rSx6r1vidqVzbDqwySWHcSUvxOdx9Nwn6g2uJOScSWn4k5OxZ2cgrdTZ3/8hAFLXivUJfmqTzJW\nn2SsPslYXVrL90L7uDRpqpjdbr/+zP8/64rLeYsWEdxy9hfzxvpcHDUexo3oxZ3X9cZqNlIpn/b/\nkNeLYe8ejOk7MGWmY8xIw5iXi662tuGQsHBcw6/BnZyKKzkFd1IK3u49Gl09aQ/84v9ieXH+d/zx\nQAldO4Tx1Jh+dDqyF1NmGsb0NIyZ6YR8sYWQL7bU38/TqXN9EeNKTsWdlIwS1aYlExBCCCGEaJIr\nWlVMtG6KovDpjqOs+GwPBr2eR8YNYtjgTv4elnYoCvpjRzFmpGHKqCtSsjLRVzZ8qqGYTLgHx9UV\nKam4k1Lw9B8AhotPqwyzmnjq7gTe3byXT9OO8sf3dvLExHgGXHV1/TG6slKMdVdxjHVjMH+4CfOH\nm+qPcffp27iYiUsAq7V5sxBCCCGEuEJNmirWFDJVLLi4PV6WfrKbLzILiAwL4clJ8fTtElX/9daY\nsa6kGGNmOqa6qx2m9DT0pxr6UhSdDk//AbiT6gqE5BTcg+PBbG7S9zs7488zjrH0k90ATBtl47qE\nLue9n/54AcaM9IZiJjMdffnphnEajbgHDsadlII7xTc1zWOLBWPr+5yjNZ7HLUnyVZ9krD7JWH2S\n8ZV777O9bM8/+aNfMxh0eDyX/zZ9aGwM99zc77xfX736PXJysnj++T/x4ot/YNCgOCZOvPuij9vs\nU8VE61bpcDF3bQ75h8voERPO7MkJtIu0+HtYLauqClNOVt2UrDRM6ekYDh9sdIinW3dqxt6Jq64A\ncCcmoUREqjKcG5O70rGtlbnrcln4QT7HT1Uz+ca+6PU//N33du5Cbecu1N4xtu4GL4YD++qnl5ky\n0jHmZGHKyYIlCwFQQkNxxyfW/yyupBS8vXpL878QQgghftSkSfewY8f3/OlPz+NyuS6paLkYueIi\nLsvx4ipeXpnNyTIHKQOimTV2EOaQH05rCqqMXS6Mu/IavbE32Heh83rrD/G2beub7lX/xj4VJSZG\n1WH9WMaFJdW8vCqbEyXVJPZtzyPjB2M1N+HzCZcLY/7Ohp85Pe3Hf+b6q0e+n13p2PFKfyxNCarz\nWIMkX/VJxuqTjNUnGatLzXxzc3N49NEZzJ//DjZb7KWOp3lXFWsKKVwCX+6BYl5fl4ejxs2Y4T2Z\ncH0f9Of5xD1gM/Z6Mezf5+tHOdObkpuNrqam/hAlNBRXQlKjqVTenr1a/OrD+TKudrp4fV0ueQdL\n6RodxlOTEujQphl6Vs5cZcpIr7vKlIbh0MFGh3i6dms8FS4xCSUy6scfLwAE7HkcICRf9UnG6pOM\n1ScZq0utfF0uF48/PosxY8azadN65s59C9Ml7Dknhcs55Bfg8iiKwmfpx1j+6R70eh0zRscyPO7C\nTfiBkrH+eAHG9DTfCl/paRizMn7Y7zEozlek1DWvewbYNNHvcaGMPV4vKz7dy+b0o0SEmnhiYjz9\nuzX/6mH1fT11jf+mjHT0RQ1zaBWdDk+//r5iJsW3+IB7cLxv35kAECjncaCSfNUnGatPMlafZKwu\ntfKdM+efREZG8dBDDzN//n+orq7iySd/eSnjkcLlbPILcOncHi/LPt3D5xnHiAw18cSkBPp1vfgn\n6FrMWFda4lth68wyxBnpGAobr+Lt7tuv8Qpbg+M1u8LWpWT8WfpRln2yB70epo+K5Zp4lfdxURT0\nBccaisGMNIyZGT9cSW1QXEPGyamXvJJaS9PieRxMJF/1Scbqk4zVJxmrS2v5SnO+aJJKh2/K0a5D\npXSLDmf25Hg6RGnzTfwPVFdjzMn27WlyZvWsA/sbHeLp3IWaO8bV75USjHua3JzSjY7tQnl9bS7z\n399FQXEVk27oe94pfldMp8PbtRu1XbtRO+5O321n9q7JSPOtZJaZjjE3B1NWBta35/sOCQvHnZDY\nqGg8d+8aIYQQQrRuUriIH3W8uIo5q7IpLHWQ3L8Ds8YNwhKi0dPF7caQv6v+TbEpPQ3Dj+wiX3vD\nTXXTlVrXLvKDe7Xjd9NSmbMqmw+/O8yJ4uqWfT71ejwDbHgG2Ki5d6rvttpajDtzG5ZlzkzH9N03\nhHz7df3dvO3b1+9tU7/gQYcOLTNmIYQQQmiOTBUTP5B3sITX1+ZSXePmjmE9mXjD+Zvwz0e1jBUF\n/YH9DW9265bu1TkcDYdYLL6le8/0VCSn4OndN+g+vb/cjM+9gvbU5ATaR2mn10RXWYExO6t+o0xT\nZjqGw4caHePp3qNRMeNOSEQJj1BtTPJaoS7JV32SsfokY/VJxurSWr4yVUxcsrN7In4yZqD6PREX\noS88UfdGdoevSMlMR19WVv91xWDAEzvIN92rbkleT+xAuIRVK1qbcKuJX9yTyPJP97Al4xgvLNp+\nyT1LLUEJj8A14lpcI66tv01XVIQpK/2spajTsGxYCxvW+u6j0+Gxxfqa/88UM4PiICTEXz+GEEII\nIVQihYsAfKtQLf90D5+lH1N1FaoL0ZWfxpiZ0bAMcUYahuMFjY5x9+5D7c231hUpqbjjEyA0tEXH\nGciMBj0PjrTRpUMYyz7dzd+WpTNj9MCLrhLnL0p0NLW3jqT21pF1NyjojxyunxJozEzHlJmBMX8X\nlhVLfYeEhOCOi2+0x4ynX3/Q6/34kwghhBDiSknhIqhyunijbt+PbtFhzG6ufT8uxOnEmJvd6A2o\nce+eRod4YjpSM+qOhjegSckobdupO65W4pbUbnRsZ+X1dXnM27STguKqC+7Loxk6Hd4ePant0ZPa\n8RN8t3k8GPbsbmj+z0j3LcyQnoaVeQB4IyJxJyY12mPG27Vb0E0fFEIIIYKZFC6tXGFJNS+tyqaw\npJqkfr4m/CbttH4hHg8Ge37DXimZ6Rh35qJzu+sP8UZEUnvdjWctkZuCt3MXeWOporje7Xl2Wiov\nr8zm/W8Pcby4mofHDtTuIgznYzDgiR2IJ3YgNfc94LvN6axr/m+4emf6+ktCvtpafzdvdEzDFMO6\nleWUdu399EMIIYQQ4mKkOb8V23WwhLnrcqlyuhl1dQ8m39AXvf7KCwVdYSEd8tKo/uJr3xvG7Cx0\n1VX1X1fMZtxxCfVvGt3JqXj69JWpPJepuc7jSoeLuWtzyD9cRo+YcGZPTqBdpHaa9puLrvw0xqxM\n30pmdXvMGI4dbXSMp2evuvNyCK6UIbQdfTNFJdV+GnHwk9di9UnG6pOM1ScZq0tr+coGlOfQ2hPk\nD59nHGPpJ7sB38aE1yZcYRO+omD6+kusC+YR8uGm+qWIFb0ejy228UpQsYOkeboZNOd57PZ4WfrJ\nbr7ILCAyLIQnJ8XTt4s2mvbVpCssrC9izqxUpy8tbTigVy8qH5iB8/5pKO3lakxzk9di9UnG6pOM\n1ScZX7mw55/FvHHdj37NoNfh8V7+2/SacXdR9fyL5/3688//jttvH82IEddy8OABXnvtJf7+95cv\n+riyqpio5/F6eXfzXj5NO0q41deEP6B705vwdRXlmN9bgfXttzDa8wFwD47HOP1BymITcMUlQHh4\ncw1fqMRo0DOtrml/xeY9/HVpBjPHxDJskDab9puL0rEjtSNHUztydN0NCvpDBzFlpGHa+jnWtasI\nf/EPhP39z9TcORHHzFm4U4b4d9BCCCFEABg/fgJr165ixIhref/9DYwde+cVP6ZccWlFqp0u3lif\nR+6BErp2CGP25ASim9iEb8jfhXXhPMzvrUBfVYliMlEz7k4cMx7BfdXVRMdEtsqMW5Ja53HO/mLe\nWJ+Lo8bD2BG9uOu63tpv2ldJtMlD5atvYFn4Fsb9+wBwJSXjmPkINXdOBKvKi1gEudb6WtySJGP1\nScbqk4zVpVa+iqIwffoUXn75dX7+88eZP38JRuPFr5nIVLFztMZfgMLSauasyuZ4cTUJfdvz0/GD\nL78J3+Ui5MNNWBe+RcjXXwLg6dIV57QZOB54CCUmpv7Q1phxS1Mz42OnqpizKouiMieptmgeHjMI\nc4hBle+lZfUZe72YvtiCdeE8Qj7+CJ3Xi7dtW5xTp+GYPhNvr97+HmpAktcJ9UnG6pOM1ScZq0vN\nfN9552327NlNTExHHn/8qUsdjxQuZ2ttvwD5h0p5bW0OVU43I6/qzt039rusJnx94QksixdiWfI2\nhhPHAai97kYcM2f5ptj8SPXc2jL2B7UzrqiuZe7aXOxHyujZMYInJ8UHZdP+hfxYxvojh7EuXojl\nnbfRFxej6HTU3nIbzpmzqL35Nllk4jLI64T6JGP1Scbqk4zVpWa+JSXFTJw4hkWLVtCzZ69LHc95\n36TKX9gg90XmMf75bibOWg8PjY7l3pv7X1rRoiiYvv2aiFkP0S55EGF//wu6qiqqH/4pJV/v4PTq\nDdSOGfejRYsIDhGhIfxqShLXJXTmUGEFLyzewf6Ccn8Py++83XtQ9bs/UJyZT/lrb+JOGYL504+J\nmno37a5OwvraHHSlJf4ephBCCOF3Ho+HxMTkSy5aLkYKlyDl9Sos/3QPiz6yYzUb+fWUJK5P7HLx\nO1ZWYln4Fm1vHE6bO0djWb8GT/8BVPzt3xRn5VP157/j6T9A/R9AaILRoOeh0bFMubkf5VW1/HVZ\nOtt2Ffp7WNpgNlNz9xTKPtxM6adbcUx9EH3hCcL/37O0T4wl/KmfYczK8PcohRBCCL/4/PPN/OpX\nT/LTnz7ebI8pU8WCULXTzX825JGzv5gudU34MRdpwjfstvua7d9djr6yAsVopGbseJwzZuEaNuKy\nN4IM9oy1oKUzzt53ijfW5+Gs9TD+ml6Mvzb4m/YvN2NdaQmW5Uuxvv0WhoMHAHClpOKYMcvXzG9p\nXVPtLkZeJ9QnGatPMlafZKwureUrPS7n0NoT1JxOljmYsyqbglNVxPfxNeGHWs4zncvtJuSjD3wN\nx19+AYCnU2ec02bgfPAhvB2bvhRuMGesFf7I+FhRJS+vyubUaSdDY2OYOWYgZlPwNu03OWOvF9Pn\nm337Gn3yX3SKgrd9+4Zm/h49m3+wAUheJ9QnGatPMlafZKwureUr+7i0EvbDpby2NpdKh4vbhnTn\n3pt/vAlfd/Ik1nfexrJ4IYaCYwDUXnOdr9l+1BgwmVp66CJAdI0O59npQ5i7Joft+ScpKnPw5KQE\n2kaY/T00bdHrcd18G66bb0N/6CDWRQuwLFtM6Cv/xvrqS9TePgrHjFm4brxZmvmFEEKISyRXXILE\nl1kFLP6vHYAHbh/ADUldGx+gKBi3fY914ZuYN65H53LhDQun5p4pOGbMwhM7sFnHE4wZa40/M3a5\nvSz5r52vco7TJjyE2ZMT6NUp0i9jUVOzZux0Yl63GuvCeZgy0gFw9+6Dc8bDOKfcj9KmbfN8nwAi\nrxPqk4zVJxmrTzJWl9bylali59DaE3QlvF6FlZ/v5b/bjhBmMfL4hHhie571BqiqCsvq97AufAtj\nXg4Ablusb8793feiRKjzZjOYMtYqf2esKAr/3XaElVv2YjLq+cnYQQyNjbn4HQOIWhkbM9KwLnwL\n89pV6GpqUKxWnBPvxjlzFu74xGb/flrl73O4NZCM1ScZq08yVpfW8pWpYkHKUeNrws/eV0zn9qHM\nnpxAx7ahABj27cGy8C0sK5ahLz+NYjBQM+4uHDNn4Rpx7WU32wtxLp1Ox6ire9CpfSj/2ZDH6+ty\nOX5tb8Zd0wudnF8X5E5OpSI5lcrnX8Sy7B2sb8/HunQx1qWLcQ25CsfMWdSMuwvMMgVPCCGEOEOu\nuASoorom/GOnqojr3Y5H7xxMqFFHyCf/xbrgTUK+2AKAJ6YjzgcfwjltBt7Ol7AccjMJhoy1TksZ\nHz3pa9ovLndy1cAYZt4xkJAgaNpvsYw9HkI++wTLgnmEfPapr5m/QwccD9T97nbrrv4Y/EBL53Cw\nkozVJxmrTzJWl9bylSsuQWb3kTJeXZNDpcPFranduC8hirA3XvY12x89AkDt8GtwzpxFzR3jpNle\nqK5bTDjPTR/Cq2tz2LaroWm/TbhcMbgkBgO1t42i9rZR6A/sr2/mD3vpH4TO+Re1t4/2XS294Sa5\nWiqEEKLVkisuAear7OMs+igfxaswu3s113y1DvPGdehqa1FCw3DePQXHjIfxDBrs13EGcsaBQosZ\nu9xeFn2Uzze5J2gbYWb2pAR6dorw97CazK8ZOxy+Zv4F8zDVbWTp7tvP18x/71SUqDb+GVcz0uI5\nHGwkY/VJxuqTjNWltXybvTnfZrOZgAVAL8AMvGi32zdc6D5SuFwZr1dh1Rf72PLVHm7b9zVT920m\nwp4HgLv/ABwzHqbmnvtQIqP8PFKfQMw40Gg1Y0VR+Oj7w6z6fB8mk55ZYweRagvMpn1NZKwoGNN3\nYF0wD/P6NXUfUoTinHQvjpmz8AyO8+/4roAm8g1ykrH6JGP1Scbq0lq+akwVewAottvtD9pstvZA\nBnDBwkU0naPGzer5H9Nr4zIW7dxCmKMCRa+n5o5xvukj190g00eEZuh0OkYP60mndqG8uXEnr63N\nZcL1fRg7vKc07TeFToc7dSgVqUOp/H9/xrJsMdZFC7AuWYh1yUJcVw/3NfOPGQ8hIf4erRBCCKGa\nphYuK4FVZ/23uxnGIs7l8eBcv5GKf73CL3Zv993UIZqqR3+Kc9pMvF27+XmAQpxf8oBonnkghVdW\nZ7N2636OF1cxY3QsJmPgN+37i9KhA47Zv8Tx+FMNC3F8/hmm77/FGx2D48xCHF26XvSxhBBCiEBz\nRT0uNpstAt+Vlnl2u33ZhY51uz2KUd6wXJpTp2D+fGpfnUvI0cMAHI9NIubZX2O4+275VFUElNIK\nJ39euI38Q6XYerTldzOuom2kxd/DCh579sDrr8PChVBWBgYD3HknPP443CTN/EIIIQJO829AabPZ\nugNrgbl2u33BxY6XHpeLazSPvaYGp8nMF7E3wGOPkjL5Vn8P77JoNeNgEkgZu9we3v4wn2/zCmkX\n6Wva79FR+037gZQx1dVY1qzEsmAeptxsANwDbA39byptNnslAirfACUZq08yVp9krC6t5XuhHhd9\nUx7QZrN1BD4Gnr6UokVcgMOBefk7tLn9BtqOuhnLe8s53a4Tb974Ex57YhHm+W8GXNEixLlMRgMP\njx3EpBv6UFJew5/fSSN9d5G/hxVcQkNxPjCdss1fUrrpE5yT7sFwYD8Rz/wP7RJiCf/NLzDs2unv\nUQohhBBN1tRVxV4G7gXyz7p5tN1ud5zvPnLFpTH9wQNY356PZfkS9KWlKHo9jttGsdJ2G6sNPYlp\nF8bsyQl0bh/m13E2lRYyDnaBmnGavYh5m/KodXmZdEMf7him3ab9QM34DF1REdali7AsWoDh2FFA\nW3s8BXq+gUAyVp9krD7JWF1ay7fZl0NuCilcAK+3YXfszZ/U747tvH86BROm8q/vSjlyspKBPdvy\n2F1xhFsDd+NIrf0SBKNAzvjQiQrmrM6mtKKG4YM78dBomyab9gM540bcbkI+/gjrgnmEbN0CgKdj\nJ5xnmvk7dfbLsIImXw2TjNUnGatPMlaX1vJt9qli4vLoSkuwvjaHdlcnETX1bsyffow7ZQjlr71J\nccYush/6OX/YXMiRk5XcmNyVX9yTGNBFixAX07NTBL+fPoQ+XSL5Nu8Ef1uewemqWn8PK3gZjdTe\nMZbTq9ZT8k0a1bMeRVddTdg//o92KYOJeHg6pm++ghb6IEsIIYRoCrnioiJjVgaWBfOwrF2FzulE\nsVhwTrwb58xZuBOSAPgu7wQLPsjH4/Uy9dYB3JzSVbPTZi6H1qr3YBQMGde6PCz8MJ/vdxbSPtLM\n7MmJdI8J9/ew6gVDxudVWYll9XtYF8zDuKtuM9vYgThmzKLm7ntRwtVfPCGo89UIyVh9krH6JGN1\naS1fmSp2DlWfIKcT8/o1WBfOw5SeBoCnV28cM2bhnDIVpW07ALyKwtqt+3n/20NYzUYeu2swcb3b\nqzMmP9DaL0EwCpaMFUVh07eHWLt1P2aTgUfGDyK5f7S/hwUET8YXpCgYv/8O68I3MW9cj87txhse\nQc09U3DMfATPAJtq37pV5OtnkrH6JGP1Scbq0lq+FypcmroBpTiH/vAhrIsWYFm2GH1xMYpOR83t\no3w72994C+gbZuXV1Hp4a9NO0nYXEdPGylN3B24TvhBXSqfTMW5ELzq3C+WtTTt5dXUOk2/sy6ir\newTF1UfN0+lwDxtOxbDhVP6xEOs7b2NZvBDrgnlYF8yj9trrccyYRe3oMWCUPxlCCCH8R/4KXQmv\nF9Pnn2FdOI+Qjz/yNdu3a0f1Ez/HMX0m3p69fnCXknInc1Znc7iwktgebfjZhHjpZxECGBIbQ3Qb\nK3NWZ7Py830UnKpi2qhYTEZpxWspSseOVP/qaaqf+hUhH77ve237aishX23F07kLzmkzcDzwEErH\njv4eqhBCiFZIpoo1ga6sFMuKpVgWvoXxwH4AXCmpvrnhd04Ey4/vCr6/oJxXVmdzuqqW6xO78MDt\nAzAagvNNmdYuOwajYM24rLKGV1Znc+B4Bf26RfHExHgiQ0P8MpZgzfhyGHbbsS6ch/nd5egrK1BM\nJmrGjscx4xHcVw+DK7gqJvmqTzJWn2SsPslYXVrLV3pcztHUJ8iYk+Vrtl+zEp3DgWI2UzNhMo6Z\ns3AnpVzwvt/vLGTBB7twe7xMubk/tw7pFtTTYLT2SxCMgjnjWpeHBR/sYtuuk3SIsjB7cgLdolu+\naT+YM75cusoKzCvfxbpwHsb8XQC4B8XhmPEwzkn3QPjlPz+Sr/okY/VJxuqTjNWltXylcDnHZT1B\nNTWYN67DumAeph3bAPD06IXjoZ/gnPoASrsLN9R7FYUNXx1gw9cHsZoNPHpnHPF9gqcJ/3y09ksQ\njII9Y0VR2Pj1QdZ9dQBziIGfjh9MUr8OLTqGYM+4SRQF07dfY1kwD/MHG33N/BGROKdMxTljFp5+\n/S/5oSRf9UnG6pOM1ScZq0tr+UpzfhPojx7xNai+8zb6U6d8zfa33o5zxsPU3nwbGC6+WV6Ny8P8\nTTvZYS8iuo2F2ZMT6dpBmvCFuBQ6nY7x1/amc4cw5m/aySursrn7pn6MvKp7UF+t1DydDteIa3GN\nuJaqE8exLPE184fOe4PQeW9Qe/1NOGbOovb2UdLML4QQolnJX5WzKQqmL7b4dpf++EN0Xi/etm2p\n/tlsX7N97z6X/FClFTXMWZ3NoRMVDOjehscnxBHhp3n6QgSyobExdIiy8MrqbN7bsreuad8WtP1h\ngcTbqTPV//MM1T//NSEfbvK9dm7dQsjWLXi6dsM5fSaO+6ejRGtjeWshhBCBTaaKAbrTZVjeXeZr\ntt+3FwBXYjKOmbOouWsSWK2X9fgHjpczZ3U2pytruS6hMw+ObH1vsrR22TEYtbaMG30Y0C2KxyfG\nq/5hQGvLuDkYdu30NfOvfBd9VaWvmX/cXThmPoJ76FWNmvklX/VJxuqTjNUnGatLa/lKj8s5zjxB\nhrxcrAvmYVn9LrrqapSQEGrunOhrtk8Z0qTVcrbtKmT++74m/Htv6sdtQ1vntBat/RIEo9aYcY3L\nw/z3d7Ej39e0/9TkBLqq2LTfGjNuLrqKcszvLce68C2Mu+0AuOIScM6chXPi3RAaKvm2AMlYfZKx\n+iRjdWktXylczuZyEb31Y1wvzcH0/bcAeLr3wDH9JzinPojSoWnNv4qisOHrg6z/6gCWukbixBZu\nJNYSrf0SBKPWmvHZC15YQnwLXiT0VWfBi9aacbNSFExfbcW68C1CPtyEzuPBG9UG55T7Cf3VUxS1\n6eTvEQY1OYfVJxmrTzJWl9bylcLlLGEvPk/onH8BUHvTLThmPkLtrbdfUrP9+Zy7dKvanwIHAq39\nEgSj1p7x2UuMq3V1s7Vn3Nz0Bcd8i54seRt90Umg7nV4xixqbxt5Ra/D4sfJOaw+yVh9krG6tJav\nrCp2lpo7xhLaPoqSkePw9Ol3xY9XWlHDq2t8m+X1r5t376/N8oRoTa4e1JHoNlZeWZPNis/2UlBc\nHdSbugYDb5euVP/vs1T/8jeY399A5JIFhGzZTMiWzXVXvmfinDqtyVe+hRBCBLdW9xfenTIEfv/7\nZilaDp39p+/VAAAgAElEQVSo4MXFOzhwvIJr4zvz6ynJUrQI0YL6dInkuWlD6NExnK1ZBfxzRSaV\nDpe/hyUuJiSEmgmT4csvKdnyDY5pM9EXnyL8xedpnxRLxOOPYEzbDi00I0AIIURgaHWFS3PZkX+S\nv7yTRllFDffc1I8Zd8RiMkqcQrS0dpEWnrk/lVRbNPYjZby4aAcFp6r8PSxxiTyD46j8x0sUZ9up\n/NNf8fToiWXlCtqOvoU2t9+Iefk74HD4e5hCCCE0QN5pXybfbt4HmLsuF51ex5OTExh1dY9WuXKY\nEFphDjHw2F1xjB3Ri5NlDv60ZAc5+4v9PSxxGZTIKByzHqP06x2UrVxPzeixGHOyiHzqZ7RPtBH2\nh9+hP7Df38MUQgjhR1K4XIZal4c3N+5k7ZcHaB9p4XcPpJLUilcOE0JL9DodE6/vwyPjBuFyK7y0\nMotPdhyhpRYgEc1Ep8N1w02UL1pGyY4cqn7+azAaCX39FdoNSybyvkmEfPIReDz+HqkQQogWJoXL\nJSqrrOGvyzL4fmch/bpG8dz0IXSLad0rhwmhRcMGd+Lp+5OJCA1h+ad7WPJfO26P19/DEk3g7dad\n6t/+nuKMXZTPnYd7yFWYN39C1P330O7qZKyvvoyuRK6sCSFEayGFyyU4dKKCFxbt4MDxckbEdeJ/\n7ksmMkya8IXQqr5dovj99CF0jwnn88wC/v1eljTtBzKzmZrJ91L2/ieUbv4SxwPT0RcVEv7H52if\nGEvEk49izEjz9yiFEEKoTAqXi0izn+QvS31N+Hff2JefjBkoTfhCBIB2kRaeeSCF5P4d2HWolBcX\n7+B4sTTtBzp3fCKV/3qF4qx8Kv/4ZzxdumJ5dxltR95Em5E3Yl6xFJxOfw9TCCGECuQd+HkoisKm\nbw7y2tpcdOh4YmI8o4f1lCZ8IQKIJcTI4xPjGTO8JydLHby4OI28AyX+HpZoBkqbtjgefYLSb9Mp\nW7GGmlF3YMzKJHL2Y7RPiiXsj79Hf+igv4cphBCiGUnh8iNcbg/zNu1kzdb9tI80+z61HRDt72EJ\nIZpAr9Mx6Ya+PDx2IC63h3+/l8XmtKP+HpZoLno9rptvpXzxCkq2ZVE9+5eg0xH66ku0uyqRyAfu\nwfTZJ+CVPichhAh0Uric43RVLX9blsF3eYX07RrJs9OH0qNjhL+HJYS4QiPiOvObqSmEW40s/WQ3\nSz6Wpv1g4+3Rk6pnn/c187/6H9wpqZg//og2UybRblgy1rmvoCuVK25CCBGopHA5y+HCCl5YtJ19\nBeUMH9yR39yXTJQ04QsRNPp1jeLZ6UPoFh3OlvRj/Pu9LKqc0rQfdCwWau65j7IPP6P0ky9wTH0Q\n/YnjhD//O9onDST8549jzM709yiFEEJcJilc6mTsLuIv76RTUl7DpBv68PDYQZiMBn8PSwjRzDpE\nWfntgykk9TvTtJ/GiZJqfw9LqMSdmEzlS6/5mvmf/xPemI5Yly2h7a3X02b0LZhXroCaGn8PUwgh\nxCVo9YWLoih88N0hXl2Tg4LC4xPiGTO8lzThCxHELCFGnpgUz+hhPSgsqebFRTvYeVCmEAUzpW07\nHD97kpLvMzm9fBU1t43EmL6DyMcf8TXzv/g8+iOH/T1MIYQQF9CqCxeX28v893ex6vN9tIkw88z9\nqaTapAlfiNZAr9Nx9439+MmYgdS6Pfzr3Sy2pEvTftDT66m95XbKl66k5PtMqh9/CrxeQuf8i3ZD\nE4icNgXTls3SzC+EEBpkbOodbTabHpgLJAI1wMN2u31vcw1MbeVVtby6Joe9x07Tp0skT06MJyrc\n7O9hCSFa2DXxnYlpa+XVNTks+Xg3BaeqmXJrPwz6Vv25Tqvg7dWbqj+8QNVvfot5/RqsC97E/NEH\nmD/6AHefvjhnPIxzyv0oUW38PVQhhBBc2RWXuwCL3W4fDvwv8M/mGZL6DhSc5oVFO9h77DRXD6pr\nwpeiRYhWq3+3Njw3bQhdo8PYnH6Ul1ZmUy1N+62H1UrNlPsp+/gLSv+7Bee9UzEcO0r4c8/QPjGW\n8F/NxpCb4+9RCiFEq3clhcu1wEcAdrv9O2BIs4xIZfbDpTz96pcUlzuZcH0fHhk3iBCTNOEL0dp1\naGPltw+kkti3PXkHSnhxcRoFpyr9PSzRwtzJqVS88gbFmflUPvdHvB2isS55m3Y3X0ObsbdjXrMS\namv9PUyhAW6Plw+/P0TuvlP+HooQl6+yEtO3X2N9bQ789rcBs0iJTlGUJt3RZrO9Bay22+0f1v33\nYaCP3W53/9jxbrdHMWpgla5F7+9k41f7+cV9KVyT0MXfwxFCaIzHq7Do/Z2s/Xwv4VYTzzw0lIR+\n0vvWank88OGHMHeu71+AmBiYNQt++lPo3t2/4xN+UVFdy/8t2k723lOMHtGLn01K9PeQhDi/2lrI\nyYFt22D7dt+/u3Y19PKZTJCXB/37+3ecDc67QtaVFC7/Ar6z2+3v1f33Ubvd3u18xxcVVTTtGzUz\nRVGIjAqlotzh76EEtejoCIqKKvw9jKAmGavry+wClvzXjqLA/bcP4Makrv4eUtAJtHNYf2A/1rfn\nY1m+BH1ZGYpeT+2oMThmzsJ13Q2gwdUoAy3jQHC8uIqXV2VzstRByoBonnnoKnlPoTI5jy+D14th\n316MGWmYMtIwZqZjzM1Bd9YVFSU0FFdCEu7kVNzJKUSOuoUii3Z6+aKjI877Ytrk5nzga2Ac8J7N\nZhsGBMQEYJ1Oh8VsRE5/IcSFXJfQBVvvDry44HsWf2Sn4FQV994sTfutmbd3H6r+35+oevp3WNat\nxrJgHuYPNmL+YCPufv19zfz3TkWJjPL3UIVK8g6UMHddLo4aN2OG92TC9X3kPYXwH0VBX3AMY0Z6\nQ5GSmYG+orzhEKMR96C4+iLFlZSCZ4ANjGeVANERECCF4ZVccTmzqlgCvks6M+x2e/75jtfKFReQ\nyr0lSMbqk4zVFx0dQd6ek8xZlU3BqSrierfj0TvjCLVcyWc+4oyAP4cVBWPadqwL5mHesBZdbS1K\naBjOyffimDkLz6DB/h5h4GesIZvTjrL80z3o9TpmjI5leFwnQDJuCZKxj660pFGRYkpPQ190stEx\n7n79cSel4EpJxZ2UgjsuASyWCz6u1vK90BWXJhcul0sKl9ZFMlafZKy+Mxk7atz8Z0Me2fuK6dw+\nlKcmJxDTNtTfwwt4wXQO64qKsCxfgvXt+RiOHgGgdtgInDNnUXPHOAgJ8cu4giljf3F7vCzfvIct\n6ceIDDXxxKQE+nVtuKomGauvVWZcXY0xOwtTZlrdtK90DAcPNDrE06Vr4yIlMalJy7drLV8pXM6h\ntScoGEnG6pOM1Xd2xl6vwntb9vLx9iOEWYw8MTEeW4+2fh5hYAvKc9jjIeST/2Jd8CYhn3/muymm\nI84HH8I5bQbezi27KExQZtyCqpwu5q7NZdehUrpFhzN7cjwdoqyNjpGM1Rf0GbtcGPN3YsxIbyhS\n7LvQeTz1h3jbtPEVKckpuJOH4E5OwduxU7N8e63lK4XLObT2BAUjyVh9krH6fizjrVm+pn2AB0fa\nuD5RVidsqmA/hw379mB5ez6W5UvRl59GMRiovWMcjhkP47rmuhZp5g/2jNV0oqSal1dlU1hSTXL/\nDswaNwhLyA+niUrG6guqjL1eDAf2+YqUuulextxsdE5n/SGK1Yo7PrGuSEnFlZSCt3cf1V4ztJav\nWs35QgjR6lyf2IWOba28uiaHtz/Mp+BUFffc1A+9XnsrSgn/8vTtT9UL/0fV/z6HZc1KXy/MxnWY\nN67DbYvF8dDD1NwzBSUi0t9DFefYebCEuWtzqa5xc8ewnky8oQ96Da4aJ7RPf+I4xvSGnhRjVgb6\n02X1X1cMBjyxg+qne7mSU/HEDmzcPC/qyRUXoQrJWH2SsfoulPHJUt+nsceLq0no256fjh+M1Sx/\naC5HqzuHFQXj9m1YF7yJeeM6dC4X3rBwau6ZgmPGLN+blWbW6jJuBlvSj7L0kz3o9TB9VCzXxHe+\n4PGSsfoCJWNdWSnGzAxMmen1074MJ443Osbdu0/DCl/JQ3DHxUOof3smtZavTBU7h9aeoGAkGatP\nMlbfxTKudrp5Y30uuQdK6NohjCcnJxDTxnre40Vjrfkc1p08iXXpIiyLFmAoOAZA7TXX4Zg5i9pR\nY3wbwjWD1pzx5fJ4vaz4dC+b048SEWriiYnx9O928UZnyVh9mszY4cCYm+1b4auuSDHu39foEE/H\nTo2WIXYnJaO0beenAZ+f1vKVwuUcWnuCgpFkrD7JWH2XkrHH6+Xdz/by6Y6jhFt9b3YGdNfORl5a\nJucw4HYT8t8PsS58i5CtWwDwdOrc0Mx/hc23kvGlqXa6eH19HnkHSugWHcbsSQl0uMQPISRj9fk9\nY7cbgz2/oUjJTMe4Kw+d211/iDcyCndiMu4UX0+KOyW1xRfjaCq/53sOKVzOobUnKBhJxuqTjNV3\nORl/nnGMpZ/sBmDaKBvXJQTGHyx/knO4McOe3VjefgvLimXoK8pRjEZqxozHOXMWrmEjmtSYKxlf\nXGFpNS+vzOZESTWJfdvzyGVO+5SM1deiGSsK+oMHfNO90tN8/+ZkoauubjjEbMYdl9CwDHFyKp4+\nfSFANyjW2jkszflCCKGyG5O70rFdKHPX5rDwg3yOn6pm8o19pWlfXDJP/wFU/elvVD3zeyyr38O6\nYB6W9WuwrF+De+BgHDMexjn5XggP9/dQg8auQ6XMXZtDldPNqKt7MPkG+Z1tbXSFhXU9KTsw1V1N\n0ZeW1n9d0evx2AbWr/DlTk7BPXBws03nFJdHrrgIVUjG6pOM1deUjAvrllBt6qe3rYmcwxehKJi+\n/xbLgjcxb9qAzu3GGxGJ8977cD70MJ4Btos+hGR8fmdfJZ0+KpZrEy7chH8+krH6mitjXflpjFmZ\njXafNxw72ugYT89ejfZKccUnQljYFX9vLdPaOSxTxc6htScoGEnG6pOM1dfUjM+eL981OoynLmO+\nfGsi5/Cl0xeewLLkbSyLF9avUlR73Q04ZsyidtQd5106VTL+oebuS5OM1dekjJ1OjHk5DcsQZ6Zj\n2LsH3Vnve70dohuWIU5JxZ2YgtK+fTOPXvu0dg5L4XIOrT1BwUgyVp9krL4ryfjcFYoenyBN++eS\nc7gJXC5CPvoA68J5hHy1FQBPl644p83A8cBDKDExjQ6XjBs7dyXA2ZMTiL7CDxUkY/VdNGOPB8Nu\nu69IOdNAvzMXnctVf4g3PAJ3UnL9Xinu5BS8Xbu1yEawWqe1c1gKl3No7QkKRpKx+iRj9TVHxpe7\nJ0RrIufwlTHY87EunIf5vRXoKytQTCZqxt2JY8YjuK+6GnQ6yfgsau29JBmrr1HGioL+8KFGe6WY\nsjLRVVfVH6+EhOCOi/cVKUkpuFOG4OnXP2Cb59WmtXNYCpdzaO0JCkaSsfokY/U1V8Z5B0t4vW4X\n7tFX92CSNAADcg43F11lBeb3VmBdOA+jPR8A9+B4HDMeJuKnMylyaObPr9/YD5fy6hpfE/7tQ7tz\nz039mu13UM5jdemKiuhwYBdVn3/lK1Iy09EXF9d/XdHp8Ayw4U5uWIbYPXAwmM1+HHVg0do5LIXL\nObT2BAUjyVh9krH6mjPjEyXVvLwyi8JSB0n9OvDI+EFYQlp3076cw81MUTB9+zWWBfMwv78BnccD\nRiOugYN9S7bW7S/hscWetycmGG3NKmDJf+0APDjSxvWJzbtUuZzHzUdXWYExOwtjXU+KKSMNw5HD\njY7xdO/hm+p1pkhJSEQJj/DTiIOD1s5hKVzOobUnKBhJxuqTjNXX3BlXOV3MXZvLrkOldIsOZ/bk\neDpEtd6mfTmH1aM/cRzLkrcJ++pzlPR0dDU19V9TQkNxxyfWfzrtSkrB26t30M3193oV3tuyl4+3\nHyHcauLxCXHYerRt9u8j53ET1dZi3JnbsFdKRhqG3fbGzfPt2+NKSsF87QhODxiMKykVJTraj4MO\nTlo7h6VwOYfWnqBgJBmrTzJWnxoZuz1elm/ew5b0Y0SGmnhiUgL9ukY16/cIFHIOqy86OoKighKM\n+TvP+hQ7HUP+TnReb/1x3rZtz2pa9hUzSseOfhz5lXHUuPnPhjyy9xXTpa4JP0allf3kPL4EXi+G\nvXt8U73qliE25uagq62tP0QJDcOVmFS/V4orORVv9x7Sq9UCtJavbEAphBAaYTToefB2G13ah7H8\n0z38bVk6M0YPZHhcJ38PTQQrkwl3fCLu+ESYPtN3W1UVxpzsujeRaZjS0wjZspmQLZvr7+bp2q3R\nCkzupGSUiEg//RCX7mSZgzmrsik4VUVcn3Y8Oj6OUIu83WkxioL+2NFGe6UYMzPQVza8MVZMJtyD\n4hqWIU5K8e1LZDD4ceAiEMhvshBC+MEtqd3o1C6UuetymbdpJwXFVUy4vg/6IJuuIzQqLAz3sOG4\nhw2vv0lXUlx/RebM3hfm9zdgfn8DUNcE3a+/74pMcoqvx2BwPFgs/vopfmD3kTJeXZNDpcPFbUO6\nc8/NfTHISlKqanTeZKRhykhHX3Sy0THu/gOoTRpTX6Ro7bwRgUMKFyGE8JPBvdvx7LRUXl6Vzfvf\nHqLgVBWzxknTvvAPpV17XDffhuvm2+puUNAXHGvUg2DMzMCyZzmW95b7DjnzyXlywzQzT/8Bfvnk\n/MusAhbXNeFPG2XjxqSuLT6GoFdVhSknq24Z4h2+aYeHDjY6xNO1GzVjxjdcqUtMQolsndNhRfOT\nHhehCslYfZKx+loq40qHi7lrc8g/XEaPmHBmT06gXWTwfxop57D6mj1jrxfDvr0Y03c0FDPn9Cp4\nw8JxJyT+aK+CGrxehVWf7+OjbYcJsxj52YR4BvZs/ib88wna89jlatwblZ6Gwb6rcW9UmzYNV+CS\nh6jWGxW0GWuE1vKVHhchhNCwcKuJX96bxNJPdvNFZgF/XLSDJyfG07eVNu0LDdPr8fQfgKf/AGru\nneq77czqUGf1NJi++4aQb7+uv5u3fftGS9i6klJROnS44uE4aty8uSGPrH3FdG4fyuzJCXRsG3rF\nj9vqeL0YDuxrVKQY83LQOZ31hyhWK+6hVwf9anRC26RwEUIIDTAa9EwbaaNLhzBWbN7DX5dlMPOO\nWIYNlqZ9oXEhIb6CJCkF54yHgbP24zjT95CZjvnTjzF/+nH93a50P45TZQ5eXp3NsaIqBvdux2N3\nDibUYmr2Hy8Y6Y8XnDUF0NfTpC8/Xf91xWCob54/c9Wste3/I7RJzkAhhNAInU7HbUO606ldKG+s\nz+XNjTspKK7mrut6S9O+CChKeASuEdfiGnFt/W26U6cwZaY1KmYsG9bChrW+++h0eGyxvpWmzhQz\ng+IgJOQHj7/7SBmvrc2hotrFLandmHJLP2nCPw9dWSnGzAzf1bC67A2FJxod4+7Tl9rbRjb0KsUl\ngLX17jEltEsKFyGE0Jj4Pu353YNDeHlVFpu+Ocjx4ioeHjMIc4gsFSoCl9KhA7W3jqT21pF1Nyjo\njxxumJqUmY4pMwNj/i4sK5b6DgkJwR0X32iPma2OcBZ9vBuvFx4caeOmZGnCr+dw+Ja5zkyrn/Zl\n3L+v0SGeTp2pGT22oUhJTEJp03I9QUJcCSlchBBCg7p0COO56UN5bU0OafYiisrSmD2pdTTti1ZC\np8Pboye1PXpSO36C7zaPB8Oe3XXFzA7fG++cbEzpaViZB8BtIaH069yPyBtGEHW0HHe0F2/Xbq2v\n18LtxpC/q2GRhIx0jLvy0Hk89Yd4o9pQe/1NDcsQJ6fg7dzFj4MW4srIqmJCFZKx+iRj9WkhY7fH\nyzsf29madZyosBCenJRAny7a3wTwUmgh32AXFBk7nXgys9jxzgdYczMZWLSPzqeOoDvr/Ys3OqZu\nZauGPWaUdu1bZHgtkrGioD+wv74nxZSRhjEnC53D0XCIxYI7LqFRkeLp3ReCYApdUJzHGqa1fGVV\nMSGECFBGg57po2Lp0iGcdz/bw1+XpTPzjoFcPaj5lxwVQotO1SjMydNxtNsNDLr2LvreFUexy4Ex\nK7PRHjPmjz/C/PFH9ffz9OxVv0yvOzkFV3wihIX58Se5dPrCE3VN82m+aXRZGehLS+u/ruj1eGIH\n1Rdr7uQU3LGDwCSLE4jgJoWLEEJonE6n4/ah3enUzsob6/P4z4Y8jhdXMf5aadoXwW3vsdO8ujqb\n8moXN6V05b5b+mM06FEsJlzXXo/r2us5c81BV1hYX8ScWZbZsm4NrFsD1L3Ztw1suCKRkqqJN/u6\n8tMYMzMa7T5vKDjW6BhPr944b7zZd0UpKRV3fELAFGFCNCcpXIQQIkAk9O3A7x5M5eVV2Wz4+iAF\nxdX8ZMxAzCZp2hfB55vc47z9YT5eL9x/2wBuSe12weOVjh2pHTma2pGj625Q0B86WL+a1pnpVcZd\nebB0se8QiwX34PhGxYyq06ucTox5OXXFVV1vyt49jQ7xRsdQM3J0w4IEScktNu1NCK1rUuFis9mi\ngHeASCAE+KXdbv+2OQcmhBDih7pGh/Pc9CG8tiaHHfknKSpzMHtSAm0jzP4emhDNwqsorN26n/e/\nPUSo2chjd8UxuHe7y38gnQ5vr97U9OpNzYTJvtvcbgz2/Ib9SzJ807BMadsbvn9kVMP+JXXFTJMa\n2j0eDLvtjVZNM+7MRedyNXyv8Ahqr7vhrFXTUvB26dr6FhoQ4hI19YrLL4HNdrv9JZvNZgOWAynN\nNywhhBDnExEawq/vS2bxR3a+yjnOHxdtZ/akBHp3Do6mfdF6OWvdzNu4k4w9p+jY1srsyQl0bt+M\nU6KMRjyD4/AMjoP7p/luczgw5mb7ipm6AiNk6xZCtm6pv5unY6f6XpL6qyBnLyGsKOgPH2r0GKas\nTHTVVQ2HhITgTkg8a5+aIXj69guK5nkhWkpTC5d/AzVnPYazeYYjhBDiUhgNembcEUuXDmGs3LKX\nvy5NZ+aYgVw1UJr2RWAqPu1kzupsjpysZGDPtjx2Vxzh1hboP7FacQ+9GvfQq+tv0p0ua+g7qStE\nzB+9j/mj9+uPcffugzspGZzVtN+2DX1xcf3Xzmym6Sty6vppBg7+0c00hRCX7qLLIdtstp8Avzjn\n5hl2u327zWbrBHwI/Nxut39xocdxuz2K0SjzsIUQorlt23mCf7yzA0eNh6kjY5ly2wB0MtVEBJD8\nQyX8aeE2yipqGDW8Fz+dEI/RoLErEQUFsH07bNvm+3f7digr832tVy+46ioYOtT3b0oKhIf7dbhC\nBLDz/gFr8j4uNpstHlgB/Nput394seNlH5fWRTJWn2SsvkDK+OjJSuaszubUaSdXDYxh5h0DCdF4\n034g5RuoAiHj7/JOsOCDfDxeL/fd0p9bUrsFRuFd1/zfvldnipCNYdUUCOdxINNavhfax6VJH2fY\nbLZBwEpg6qUULUIIIdTVLSacZ6cNoV+3KLbtOslfl6VTVllz8TsK4SdeRWHN1n28uXEnJqOOX9yd\nyK1DugdG0QL1zf9ER/t7JEK0Gk29DvsXwAK8bLPZPrfZbOubcUxCCCGaIDIshP+Zksw1cZ04cLyC\nFxbt4NAJ7XyKJsQZNbUeXl+by6ZvDhHTxsrvHhxCXB9Z8lcIcWFNas632+13NvdAhBBCXDmTUc/M\nMQPpEh3Gqi37+Ms7aTw8dhBDYmP8PTQhACgp9zXhHy6sJLZHG342Ib5lmvCFEAFPY51vQgghrpRO\np2P01T15YlI8Op2Ouety2fj1AZra0yhEc9lfUM4Li3ZwuLCS6xO78Mt7k6RoEUJcMilchBAiSCX3\nj+a3D6bSPtLM2i8PMG/jTmpdHn8PS7RS3+8s5K/L0imvrmXKLf2ZPsqmvZXDhBCaJq8YQggRxLrH\nhPPs9KH07RrJdzsL+dvyDE5L075oQV5FYd2X+/nPhjwMeh1PTU7k9qEB1IQvhNAMKVyEECLIRYWF\n8Jv7khk+uJNvqs7iHRwulKZ9ob4al4c31uWy4euDdIiy8LsHU0noK034QoimkcJFCCFaAZPRwMNj\nBzLphj6UlNfw53fSSLMX+XtYIoiVVtTwf0vT2WEvYkC3KJ6bPoSu0bIpoxCi6aRwEUKIVkKn0zFm\neC8enxAPwGtrc3j/24PStC+a3YHj5fxx0XYOnajg2oTO/Pq+ZCJCQ/w9LCFEgGvScshCCCECV6ot\nmug2qcxZnc3qL/ZTcKqKh0bHYjIa/D00EQS27Spk/vu7cLu93HtzP+lnEUI0G7niIoQQrVCPjhE8\nN20IfbpE8m1eXdN+Va2/hyUCmKIorP/qAG+sz0Ov1zF7cgIjr+ohRYsQotlI4SKEEK1UVLiZp6cm\nM2xQR/YdK+fFRdulaV80Sa3Lw3825LH+qwP1TfiJ/Tr4e1hCiCAjhYsQQrRiJqOBWeMGMeH6PhSX\n1/CXd9LJ2CNN++LSlVbU8Ndl6WzbdZL+3aJ4dvoQukkTvhBCBVK4CCFEK6fT6Rg3ohc/uysOBYVX\nV+fw4XeHpGlfXNShExW8uHgHB45XcE18J349JZlIacIXQqhEmvOFEEIAMCQ2hug2Vuaszmbl5/s4\ndqqK6aNiMRnlMy7xQzvyT/LWpp243F7uvqkvo6SfRQihMvlrJIQQol7PThE8N30IvTtH8E3uCf6+\nIoNyadoXZ1EUhY1fH2Duulx0eh1PTIpn9NU9pWgRQqhOChchhBCNtAk38/TUFK4aGMPeo6d5YdEO\njp6s9PewhAbUujy8uXEna788QPtIM799IJXk/tH+HpYQopWQwkUIIcQPhJgM/HT8YO66rjfF5U7+\n9E4amXtP+XtYwo/KKmv467IMvt9ZSL+uUTw3fSjdY6QJXwjRcqRwEUII8aN0Oh3jr+nNY3fFoXgV\nXlmVzUffH5am/Vbo0IkKXli0gwPHyxk+uBP/c18SkWHShC+EaFnSnC+EEOKChsbG0CHKwiurs3lv\ny2SkuSsAAAisSURBVF4KTlUxbZQNo0E++2oN0uxFzNuUh8vlZfKNfRl9tTThCyH8Q/7qCCGEuKje\nnSN5bvpQenWK4Kuc4/xjeQbl1dK0H8wURWHTNwd5bW0OOnQ8PjGeO4ZJE74Qwn+kcBFCCHFJ2kaY\nefr+FIbExrD76GleXLSDo0XStB+MXG4P8zbtZM3W/bSLNPPMAymkDJAmfCGEf0nhIoQQ4pKZTQYe\nvXMw46/pxanTTv68JI3sfdK0H0xOV9Xyt2UZfJdXSJ8ukTw3bQg9Okb4e1hCCCGFixBCiMuj1+m4\n67o+PHrnYDxehZdXZfPxNmnaDwaHCyt4YdF29hWUM2xwR56emkxUuNnfwxJCCECa84UQQjTRVQM7\nEt3GypzV2az4bC8FxVU8cLs07QeqjN1FvLlxJzUuDxOv78OY4dLPIoTQFvnrIoQQosl6d/ZNJerZ\nMYKtWcf554pMKqRpP6AoisIH3x3i1TU5KCg8PiGOsSN6SdEihNAcKVyEEEJckXaRFv73/hRSbdHY\nj5Tx4uIdHDtV5e9hiUvgcnuZ//4uVn2+jzYRZp65P5VUW4y/hyWEED9KChchhBBXzBxi4LG7fJ/U\nF5U5+fOSHeTsL/b3sMQFlFfV8vcVGXyTe6Juuesh9OwkTfhCCO2SwkUIIUSz0Ot0TLy+D4+MG4TL\nrfDSyiw+2X5EmvY16MjJSl5YtIO9R09z1cAYnp6aTBtpwhdCaJw05wshhGhWwwZ3IrqtlVdW57B8\n8x4Kiqu4/7YB0rSvEZl7TvGfjXnU1HqYcF1v6WcRQgQM+SsihBCi2fXtEsXvpw+hR0w4X2QW8K93\nM6l0uPw9rFZNURQ+/P4Qr6zORvEq/OyuOMZd01uKFiFEwJDCRQghhCraRVp45oFUUgZEk3/Y17R/\nvFia9v3B5fay4INdrNyyj6jwEP73gRSGxEoTvhAisFxR4WKz2WJtNttpm81maa4BCSGECB7mEAM/\nmxDHmOE9OVnq4MXFaeQekKb9llReXcs/VmTwdc4JenWK4LnpQ+nVKdLfwxJCiMvW5MLFZrNFAv8E\nappvOEIIIYKNXqdj0g19mTV2EC63h5fey2Zz2lFp2m8Bh46X8+KiHew5epqhsTE8fX8KbSOkCV8I\nEZia1Jxvs9l0wJvAb4H1zToiIYQQQWl4nK9p/9XV2Sz9ZDdHTlXRLjzE38MKWm6Pl81px3DUuLnz\n2t6Mv0aa8IUQgU13sU+8bDbbT4BfnHPzIWCF3W5fYrPZDgKxdrvdeaHHcbs9itFouIKhCiGECAYn\nS6p5YcH3HDxe7u+hBL0Qo56f35fCdUld/T0UIYS4VOf9hOWihcuPsdlse4Gjdf85DNhmt9uvv9B9\niooqNDMnIDo6gqKiCn8PI6hJxuqTjNUnGavH5fZQXO2mpESa9dU0qF8MuN3+HkZQk9cJ9UnG6tJa\nvtHREectXJo0Vcxut/c78//rrrjc3pTHEUII0TqZjAbi+7ahKFL6LdQU3daqqTckQghxJWQ5ZCGE\nEEIIIYTmNemKy9nsdnuvZhiHEEIIIYQQQpyXXHERQgghhBBCaJ4ULkIIIYQQQgjNk8JFCCGEEEII\noXlNWg5ZCCGEEEIIIVqSXHERQgghhBBCaJ4ULkIIIYQQQgjNk8JFCCGEEEIIoXlSuAghhBBCCCE0\nTwoX8f/buZcQK+s4jOPf0bGGRCnoYpHUyieIsIVQaU2zETEoImhXpEOFVHTZRA0ZFEUEZVAhlWlO\nt0U3o1ykVEZZRCAu3PgMWbsuxHS1snKaFu8ZxpWTcOr/zv88HxiYd/dlOJxzfv/3905EREREROtl\ncImIiIiIiNbrLx3wf5I0B9gILAX+AK63/XnZqvpIugB42PZQ6ZbaSJoHbAHOBo4HHrD9VtGoykia\nC2wCBEwAa20fKFtVJ0mnAnuAlbb3l+6pjaS9wE+dyy9try3ZUxtJdwNXAMcBG21vLpxUFUlrgDWd\nywHgfGCR7R9LNdWm851ilOY7xQRwQ9vfi3vtjsuVwIDti4C7gEcL91RH0p3AszRvMtF91wDjti8B\nVgNPFu6p0eUAtlcA9wIbyubUqfOB+TTwe+mWGkkaALA91PnJ0NJFkoaA5cAK4FJgcdGgCtneOvX6\npTnguDVDS9ddBvTbXg7cDzxYuGdGvTa4XAy8A2D7U2BZ2ZwqHQCuKh1RsVeB9UdcHy4VUivbbwI3\ndi7PAr4tmFOzR4CngK9Kh1RqKXCCpJ2S3pd0YemgyqwC9gHbgLeB7WVz6iVpGXCu7WdKt1RoDOjv\nbCQtBP4q3DOjXhtcFjJ92xxgQlJPrcv912y/zix44c9Wtg/a/kXSAuA14J7STTWyfVjSKPAEzd85\nuqizAvKd7R2lWyr2G81wuApYB7yUz7uuOpnm8PNqpv++fWWTqjUC3Fc6olIHadbE9tOsSD9etOZf\n6LXB5WdgwRHXc2znxDpmFUmLgV3AC7ZfLt1TK9vXAUuATZLml+6pzDCwUtIHNHvrz0taVDapOmPA\ni7YnbY8B48DphZtqMg7ssP2nbQOHgFMKN1VH0onAObZ3lW6p1B00r+MlNHdpR6fWTNuq105fPqbZ\nX3+lc9t8X+GeiGMi6TRgJ3CL7fdK99RI0rXAmbYfojm1/pvmocXoEtuDU793hpd1tr8pV1SlYeA8\n4CZJZ9BsHHxdNqkqu4HbJG2gGQjn0wwz0V2DwLulIyr2A9NbMt8D84C55XJm1muDyzaaU75PgD4g\nDyvGbDMCnASslzT1rMtq23nAuXveAJ6T9CHNm/jttg8Vboo4VpuBrZJ2A5PAcDYMusf2dkmDwGc0\n2ys3284BR/cJ+KJ0RMUeA7ZI+ojmv+ON2P61cNNR9U1OTpZuiIiIiIiIOKpee8YlIiIiIiJmoQwu\nERERERHRehlcIiIiIiKi9TK4RERERERE62VwiYiIiIiI1svgEhERERERrZfBJSIiIiIiWi+DS0RE\nREREtN4/u6cPBCJ5QIcAAAAASUVORK5CYII=
\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAy4AAADBCAYAAAApSeRhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3
WdgVGX69/HvtMxMKi2h9xYgPYCAIooiTVCKiih1xVVR\n3F232tZnRXfd9l+xrigISlGqgOIKiGJH0hN6L4EQUkibybTzvJiQEJQWcjJnJtfnDTo5M7nzm5PJ\nXHPu6751iqIoCCGEEEIIIYSG6X09ACGEEEIIIYS4HClchBBCCCGEEJonhYsQQgghhBBC86RwEUII\nIYQQQmieFC5CCCGEEEIIzZPCRQghhBBCCKF5xob6Rvn5pQ31rS6radNgiooqfD2MgCYZq08yVp9k\nrC7JV32SsfokY/VJxurSWr6RkWEX/VqjvOJiNBp8PYSAJxmrTzJWn2SsLslXfZKx+iRj9UnG6vKn\nfBtl4SKEEEIIIYTwL1K4CCGEEEIIITTvmgqXgoIChgwZwoEDB+prPEIIIYQQQgjxE3UuXJxOJ88+\n+ywWi6U+xyOEEEIIIYQQP1HnVcVeeuklJk2axFtvvVWf4xF+zuX2sParQxw/U47D4fL1cAJKSGkR\n7Y/upv3R3bQ9sR9n1/aEDR6IKzEJV3RvMJl8PUQhhBBCCNXoFEVRrvZOq1ev5tSpUzzyyCNMmTKF\n5557jq5du17yPi6X269WLRBX72xZJX9d9CM5Bwt8PRS/Z3XY6Jq3n+6n9tPj1D665+2jZUn+xe9g\nsUBiIvTvD/36ef/t1g10uoYbtBBCCCGEiupUuNx3333odDp0Oh27du2iU6dOvPHGG0RGRl70Plra\nxyUyMkxT4wkEJ86UM29lBvnFdpJ7RvKHaf0pOaudNcE1rbIS485sTOmpmNLTMKWlYNi7B915v5qe\n5i1wJibhTEzGmZBEXseerPzwOyJ2ZTKg4ijxxYcx7d6Jzu2uuU9EE1wJiTgTk3ElJuNKTMLTqrUv\nfkK/Ja8V6pJ81ScZq08yVp9krC6t5XupfVzqNFVsyZIl1f997orLpYoWEdiyDhbw5kfZ2CrdjBnU\niTsGd8ZqNlImn/b/lMeDYf8+jKk7MKWnYkxLwZiTjc7hqDkkJBTnwOtxJSbjTEzClZCEp32HWldP\nmgO//ls0c9/5nr8cKqRtixAeH92NVsf2Y0pPwZiagjE9laAvtxL05dbq+7lbta4uYpyJybgSElEi\nmjRkAkIIIYQQdVLnHhchFEVh847jLP98Hwa9ngfH9GZAn1a+HpZ2KAr6E8cxpqVgSqsqUjLS0ZfV\nfKqhmEy4+sRUFSnJuBKScHfvAYbLT6sMsZp4/K44Ptiyn80px/nLhzt5dHwsPfpfV32MrrgIY9VV\nHGPVGMwbN2DeuKH6GFeXrrWLmZg4sFrrNwshhBBCiGtUp6lidaG1S1BaGo8/crk9LNm0ly/TcwkP\nCeKxCbF0bRNR/fXGmLGusABjeiqmqqsdptQU9Gdq+lIUnQ539x64EqoKhMQkXH1iwWyu0/c7P+Mv\n0k6wZNNeAKaO6MnguDYXvZ/+ZC7GtNSaYiY9FX3J2ZpxGo24evXBlZCEK8k7Nc3dMxqMje9zjsZ4\nHjckyVd9krH6JGP1ScbX7sPP9/Pj7tM/+zWDQYfbffXlQL/oKO4e2u2iX1+16kOysjJ47rkXmDv3\nz/TuHcP48Xdd9nHrfaqYaNzKbE5eX5PF7qPFdIgKZc7EOJqFN7JlscvLMWVlVE3JSsGUmorh6OFa\nh7jbtafy9jtwVhUArvgElLBwVYZzU2JbWja18vrabBZ+spuTZyqYeFNX9PqfTtfztG6Do3UbHKNu\nr7rBg+HQgerpZaa0VIxZGZiyMuC9hQAowcG4YuOrfxZnQhKeTp2l+V8IIYQQP2vChLvZseMHXnjh\nOZxO5xUVLZcjV1zEVTlZUM7LKzI5XWwjqUcks27vjTnop9OaAipjpxPjrpxab+wNe3ah83iqD/E0\nbeqd7lX9xj4ZJSpK1WH9XMZ5hRW8vDKTU4UVxHdtzoNj+2A11+HzCacT4+6dNT9zasrP/8zVV4+8\nP7vSsuW1/liaElDnsQZJvuqTjNUnGatPMlaXmvlmZ2fx0EMzeOed9+nZM/qKx3MxUriIK5Z9qIA3\n1uZgq3QxemBHxt3YBf1FPnH324w9HgwHD3j7Uc71pmRnoqusrD5ECQ7GGZdQayqVp2OnBr/6cLGM\nK+xO3libTc7hItpGhvD4hDhaNKmHnpVzV5nSUquuMqVgOHK41iHutu1qT4WLT0AJj/j5x/MDfnse\n+wnJV32SsfokY/VJxupSK1+n08ns2bMYPXosGzZ8xOuvv43pCvack8LlAvILcHUUReHz1BMs27wP\nvV7HjJHRDIy5dBO+v2SsP5mLMTXFu8JXagrGjLSf9nv0jvEWKVXN6+4ePTXR73GpjN0eD8s372dL\n6nHCgk08Oj6W7u3qf/Ww6r6eqsZ/U1oq+vyaObSKToe7W3dvMZPkXXzA1SfWu++MH/CX89hfSb7q\nk4zVJxmrTzJWl1r5zpv3L8LDI5g+/QHeeee/VFSU89hjv7mi8VyMFC7iklxuD0s37+OLtBOEB5t4\ndEIc3dpe/hN0LWasKyr0rrB1bhnitFQMeadqHePq2q32Clt9YjW7wtaVZPx56nGWbtqHXg/TRkRz\nfazK+7goCvrcEzXFYFoKxvS0n66k1jumJuPE5CteSa2hafE8DiSSr/okY/VJxuqTjNWltXylOV/U\nSZnNO+Vo15Ei2kWGMmdiLC0itPkm/icqKjBmZXr3NDm3etahg7UOcbduQ+WoMdV7pQTiniZDk9rR\nslkwb6zJ5p2Pd5FbUM6EIV0vOsXvmul0eNq2w9G2HY4xd3hvO7d3TVqKdyWz9FSM2VmYMtKwvvuO\n95CQUFxx8bWKxgv3rhFCCCFE4yaFi/hZJwvKmbcyk7wiG4ndWzBrTG8sQRo9XVwuDLt3Vb8pNqWm\nYPiZXeQdQ26umq7UuHaR79OpGU9NTWbeykw2fn+UUwUVDft86vW4e/TE3aMnlfdM9t7mcGDcmV2z\nLHN6KqbvvyXou2+q7+Zp3rx6b5vqBQ9atGiYMQshhBBCc2SqmPiJnMOFvLEmm4pKF6MGdGT8kIs3\n4V+MahkrCvpDB2ve7FYt3auz2WoOsVi8S/ee66lITMLduWvAfXp/tRlfeAXt8YlxNI/QTq+JrqwU\nY2ZG9UaZpvRUDEeP1DrG3b5DrWLGFRePEnrxS8rXSl4r1CX5qk8yVp9krD7JWF1ay1emiokrdn5P\nxC9G91K/J+Iy9Hmnqt7I7vAWKemp6IuLq7+uGAy4o3t7p3tVLcnrju4FV7BqRWMTajXx67vjWbZ5\nH1vTTvD8oh+vuGepISihYTgH3YBz0A3Vt+ny8zFlpJ63FHUKlnVrYN0a7310Otw9o73N/+eKmd4x\nEBTkqx9DCCGEECqRwkUA3lWolm3ex+epJ1RdhepSdCVnMaan1SxDnJaC4WRurWNcnbvgGHprVZGS\njCs2DoKDG3Sc/sxo0DNleE/atAhh6ea9/H1pKjNG9rrsKnG+okRG4rh1OI5bh1fdoKA/drR6SqAx\nPRVTehrG3buwLF/iPSQoCFdMbK09ZtzduoNe78OfRAghhBDXSgoXQbndyZtV+360iwxhTn3t+3Ep\ndjvG7Mxab0CN+/fVOsQd1ZLKEaNq3oAmJKI0babuuBqJW5Lb0bKZlTfW5jB/w05yC8ovuS+PZuh0\neDp0xNGhI46x47y3ud0Y9u2taf5PS/UuzJCagpX5AHjCwnHFJ9TaY8bTtl3ATR8UQgghApkULo1c\nXmEF/1mZSV5hBQndvE34ddpp/VLcbgx7dtfslZKeinFnNjqXq/oQT1g4jsE3nbdEbhKe1m3kjaWK\nYjo35+mpyby8IpOPvzvCyYIKHri9l3YXYbgYgwF3dC/c0b2ovPd+7212e1Xzf83VO9M3XxH09bbq\nu3kio2qmGFatLKc0a+6jH0IIIYQQlyPN+Y3YrsOFvL42m3K7ixHXdWDikK7o9ddeKOjy8miRk0LF\nl9943zBmZqCrKK/+umI244qJq37T6EpMxt2lq0zluUr1dR6X2Zy8viaL3UeL6RAVypyJcTQL107T\nfn3RlZzFmJHuXcmsao8Zw4njtY5xd+xUdV72xZnUl6Yjh5JfWOGjEQc+eS1Wn2SsPslYfZKxurSW\nr2xAeQGtPUG+8EXaCZZs2gt4Nya8Ie4am/AVBdM3X2FdMJ+gjRuqlyJW9HrcPaNrrwQV3Vuap+tB\nfZ7HLreHJZv28mV6LuEhQTw2IZaubbTRtK8mXV5edRFzbqU6fVFRzQGdOlF2/wzs901FaS5XY+qb\nvBarTzJWn2SsPsn42oU89zTm9Wt/9msGvQ635+rLgcoxd1L+3NyLfv25557itttGMmjQDRw+fIjX\nXvsP//jHy5d9XFlVTFRzezx8sGU/m1OOE2r1NuH3aF/3JnxdaQnmD5djffdtjHt2A+DqE4tx2hSK\no+NwxsRBaGh9DV+oxGjQM7WqaX/5ln28tCSNmaOjGdBbm0379UVp2RLH8JE4ho+sukFBf+QwprQU\nTNu+wLpmJaFz/0zIP16k8o7x2GbOwpXU17eDFkIIIfzA2LHjWLNmJYMG3cDHH6/j9tvvuObHlCsu\njUiF3cmbH+WQfaiQti1CmDMxjsg6NuEbdu/CunA+5g+Xoy8vQzGZqBxzB7YZD+Lqfx2RUeGNMuOG\npNZ5nHWwgDc/ysZW6eb2QZ24c3Bn7TftqyTS5Kbs1TexLHwb48EDADgTErHNfJDKO8aDVeVFLAJc\nY30tbkiSsfokY/VJxupSK19FUZg2bRIvv/wGv/rVbN555z2MxstfM5GpYhdojL8AeUUVzFuZycmC\nCuK6NueXY/tcfRO+00nQxg1YF75N0DdfAeBu0xb71BnY7p+OEhVVfWhjzLihqZnxiTPlzFuZQX6x\nneSekTwwujfmIIMq30vLqjP2eDB9uRXrwvkEffYpOo8HT9Om2CdPxTZtJp5OnX09VL8krxPqk4zV\nJxmrTzJWl5r5vv/+u+zbt5eoqJbMnv34FY/nYqRwaQR2HynitTVZlNtdDO/fnrtu6nZVTfj6vFNY\nFi/E8t67GE6dBMAx+CZsM2d5p9j8TPXc2DL2BbUzLq1w8PqabPYcK6ZjyzAemxAbkE37l/JzGeuP\nHcW6eCGW999FX1CAotPhuGUY9pmzcAwdJotMXAV5nVCfZKw+yVh9krG61My3sLCA8eNHs2jRcjp2\n7HTF47kY+Qsb4L5MP8G/PkjH7nAzfWQ09wztfmVFi6Jg+u4bwmZNp1lib0L+8Vd05eVUPPBLCr/Z\nwdlV63CMHvOzRYsIDGHBQTwxKYHBca05klfK84t3cDC3xNfD8jlP+w6UP/VnCtJ3U/LaW7iS+mLe\n/BkRk++i2XUJWF+bh66o0NfDFEIIIXzO7XYTH594xUXL5UjhEqA8HoVlm/ex6NM9WM1GfjspgRvj\n21z+jmVlWBa+TdObBtLkjpFYPlqNu3sPSv/+fxRk7Kb8xX/g7t5D/R9AaILRoGf6yGgmDe1GSbmD\nl5amsn1Xnq+HpQ1mM5V3TaJ44xaKNm/DNnkK+rxThP6/p2keH03o449gzEjz9SiFEEIIn/jiiy08\n8cRj/PKXs+vtMWWqWACqsLv477ocsg4W0KaqCT/qMk34hr17vM32HyxDX1aKYjRSeftY7DNm4Rww\n6Ko3ggz0jLWgoTPOPHCGNz/Kwe5wM/b6Toy9IfCb9q82Y11RIZZlS7C++zaGw4cAcCYlY5sxy9vM\nb2lcU+0uR14n1CcZq08yVp9krC6t5Ss9LhfQ2hNUn04X25i3MpPcM+XEdvE24QdbLjKdy+Ui6NNP\nvA3HX30JgLtVa+xTZ2CfMh1Py7ovhRvIGWuFLzI+kV/GyyszOXPWTr/oKGaO7oXZFLhN+3XO2OPB\n9MUW775Gm/6HTlHwNG9e08zfoWP9D9YPyeuE+iRj9UnG6pOM1aW1fGUfl0Ziz9EiXluTTZnNybC+\n7bln6M834etOn8b6/rtYFi/EkHsCAMf1g73N9iNGg8nU0EMXfqJtZChPT+vL66uz+HH3afKLbTw2\nIY6mYWZfD01b9HqcQ4fhHDoM/ZHDWBctwLJ0McGv/B/WV/+D47YR2GbMwnnTUGnmF0IIIa6QXHEJ\nEF9l5LL4f3sAuP+2HgxJaFv7AEXBuP0HrAvfwrz+I3ROJ56QUCrvnoRtxizc0b3qdTyBmLHW+DJj\np8vDe//bw9dZJ2kSGsSciXF0ahXuk7GoqV4zttsxr12FdeF8TGmpALg6d8E+4wHsk+5DadK0fr6P\nH5HXCfVJxuqTjNUnGatLa/nKVLELaO0JuhYej8KKL/bzv+3HCLEYmT0uluiO570BKi/HsupDrAvf\nxpiTBYCrZ7R3zv1d96CEqfNmM5Ay1ipfZ6woCv/bfowVW/djMur5xe296Rcddfk7+hG1MjampWBd\n+DbmNSvRVVaiWK3Yx9+FfeYsXLHx9f79tMrX53BjIBmrTzJWn2SsLq3lK1PFApSt0tuEn3mggNbN\ng5kzMY6WTYMBMBzYh2Xh21iWL0VfchbFYKByzJ3YZs7COeiGq262F+JCOp2OEdd1oFXzYP67Loc3\n1mZz8obOjLm+Ezo5vy7JlZhMaWIyZc/NxbL0fazvvoN1yWKsSxbj7Nsf28xZVI65E8wyBU8IIYQ4\nR664+Kn8qib8E2fKiencjIfu6EOwUUfQpv9hXfAWQV9uBcAd1RL7lOnYp87A0/oKlkOuJ4GQsdZp\nKePjp71N+wUldvr3imLmqF4EBUDTfoNl7HYT9PkmLAvmE/T5Zm8zf4sW2O6v+t1t1179MfiAls7h\nQCUZq08yVp9krC6t5StXXALM3mPFvLo6izKbk1uT23FvXAQhb77sbbY/fgwAx8Drsc+cReWoMdJs\nL1TXLiqUZ6b15dU1WWzfVdO03yRUrhhcEYMBx7AROIaNQH/oYHUzf8h//knwvH/juG2k92rpkJvl\naqkQQohGS664+JmvM0+y6NPdKB6FOe0ruP7rtZjXr0XncKAEh2C/axK2GQ/g7t3Hp+P054z9hRYz\ndro8LPp0N99mn6JpmJk5E+Lo2Orin5xonU8zttm8zfwL5mOq2sjS1bWbt5n/nskoEU18M656pMVz\nONBIxuqTjNUnGatLa/nWe3O+0+nkySef5MSJEzgcDh5++GFuueWWS95Ha4FoaTxXwuNRWPnlAbZ+\nvY9hB75h8oEthO3JAcDVvQe2GQ9Qefe9KOERPh6plz9m7G+0mrGiKHz6w1FWfnEAk0nPrNt7k9zT\nP5v2NZGxomBM3YF1wXzMH62u+pAiGPuEe7DNnIW7T4xvx3cNNJFvgJOM1ScZq08yVpfW8q33qWLr\n1q2jSZMm/OMf/6CoqIhx48ZdtnARdWerdLHqnc/otH4pi3ZuJcRWiqLXUzlqjHf6yOAhMn1EaIZO\np2PkgI60ahbMW+t38tqabMbd2IXbB3aUpv260OlwJfejNLkfZf/vRSxLF2NdtADrewuxvrcQ53UD\nvc38o8dCUJCvRyuEEEKopk6Fy4gRIxg+fHj1/xsM/t+Eq0luN/aP1lP671f49d4fvTe1iKT8oV9i\nnzoTT9t2Ph6gEBeX2COSP92fxCurMlmz7SAnC8qZMTIak1FeL+pKadEC25zfYJv9eM1CHF98jumH\n7/BERmE7txBHm7aXfSwhhBDC31xTj0tZWRkPP/wwd999N2PGjLnksS6XG6O8YbkyZ87AO+/gePV1\ngo4fBeBkdAJRT/8Ww113yaeqwq8Uldp5ceF2dh8pomeHpjw1oz9Nwy2+Hlbg2LcP3ngDFi6E4mIw\nGOCOO2D2bLhZmvmFEEIEjjoXLidPnmT27NlMnjyZiRMnXvZ4rc2d09J4zqk1j72yErvJzJfRQ+Dh\nh0iaeKuvh3dVtJpxIPGnjJ0uN+9u3M13OXk0C/c27Xdoqf2mfX/KmIoKLKtXYFkwH1N2JgCuHj1r\n+t9U2mz2WvhVvn5KMlafZKw+yVhdWsu33pvzz5w5w5QpU3j22WcZOHDgFd1Ha4FoZjznVg5aOB9T\nunfloOLWHfmw5618lziMafcOoE+nZj4e5NXTVMYByt8yVhSFT74/wqovDxJk0vPgmD4k9Yj09bAu\nyd8yBrzN/D9ux7pwPuZ1a9A5nXhCQqm86x5sM2bh7tXb1yOs5pf5+hnJWH2SsfokY3VpLd96L1zm\nzp3Lxo0b6dKlS/Vt8+fPx2K5+PQPrQXi6/HoDx/C+u47WJa9h76oCEWvxzZsBCt6DmOVoSNRzUKY\nMzGO1s1DfDrOutJCxoHOXzNO2ZPP/A05OJweJgzpwqgB2m3a99eMz9Hl52NdsgjLogUYThwHtLXH\nk7/n6w8kY/VJxuqTjNWltXzrvXCpC60F4pPxeDw1u2Nv2VS9O7b9vmnkjpvMv78v4tjpMnp1bMrD\nd8YQavXfjSO19ksQiPw54yOnSpm3KpOi0koG9mnF9JE9Ndm0788Z1+JyEfTZp1gXzCdo21YA3C1b\nYT/XzN+qtU+GFTD5aphkrD7JWH2Ssbq0lu+lChd9A46j0dIVFWJ9bR7NrksgYvJdmDd/hiupLyWv\nvUVB2i4yp/+KP2/J49jpMm5KbMuv747366JFiMvp2CqMZ6f1pUubcL7LOcXfl6Vxttzh62EFLqMR\nx6jbObvyIwq/TaFi1kPoKioI+effaJbUh7AHpmH69mtomM+xhBBCiDqRKy4qMmakYVkwH8ualejs\ndhSLBfv4u7DPnIUrLgGA73NOseCT3bg9Hibf2oOhSW01O23mamiteg9EgZCxw+lm4cbd/LAzj+bh\nZuZMjKd9VKivh1UtEDK+qLIyLKs+xLpgPsZdVZvZRvfCNmMWlXfdgxKq/uIJAZ2vRkjG6pOM1ScZ\nq0tr+cpUsQuo+gTZ7Zg/Wu1ttk9NAcDdqTO2GbOwT5qM0tTbaO9RFNZsO8jH3x3Bajby8J19iOnc\nXJ0x+YDWfgkCUaBkrCgKG747wpptBzGbDDw4tjeJ3bXRtB8oGV+SomD84XusC9/CvP4jdC4XntAw\nKu+ehG3mg7h79FTtWzeKfH1MMlafZKw+yVhdWsv3UoVLnTagFD+lP3oE66IFWJYuRl9QgKLTUXnb\nCO/O9jfdAvqaWXmVDjdvb9hJyt58oppYefwu/23CF+Ja6XQ6xgzqROtmwby9YSevrspi4k1dGXFd\nh4C4+qh5Oh2uAQMpHTCQsr/kYX3/XSyLF2JdMB/rgvk4brgR24xZOEaOBqP8yRBCCOE78lfoWng8\nmL74HOvC+QR99qm32b5ZMyoe/RW2aTPxdOz0k7sUltiZtyqTo3llRHdowiPjYqWfRQigb3QUkU2s\nzFuVyYovDpB7ppypI6IxGaUVr6EoLVtS8cQfqHj8CYI2fux9bft6G0Ffb8Pdug32qTOw3T8dpWVL\nXw9VCCFEIyRTxepAV1yEZfkSLAvfxnjoIADOpGTv3PA7xsNFloU+mFvCK6syOVvu4Mb4Ntx/Ww+M\nhsB8U6a1y46BKFAzLi6r5JVVmRw6WUq3dhE8Oj6W8OAgn4wlUDO+Goa9e7x7wnywDH1ZKYrJROXt\nY7HNeBDXdQPgGq6KSb7qk4zVJxmrTzJWl9bylR6XC9T1CTJmZXib7VevQGezoZjNVI6biG3mLFwJ\nSZe87w8781jwyS5cbg+Thnbn1r7tAnoajNZ+CQJRIGfscLpZ8Mkutu86TYsIC3MmxtEusuGb9gM5\n46ulKyvFvOIDrAvnY9y9CwBX7xhsMx7APuFuCL3650fyVZ9krD7JWH2Ssbq0lq8ULhe4qieoshLz\n+rVYF8zHtGM7AO4OnbBN/wX2yfejNLt0Q71HUVj39SHWfXMYq9nAQ3fEENslcJrwL0ZrvwSBKNAz\nVhSF9d8cZu3XhzAHGfjl2D4kdGvRoGMI9IzrRFEwffcNlgXzMX+y3tvMHxaOfdJk7DNm4e7W/Yof\nSvJVn2SsPslYfZKxurSWrzTn14H++DFvg+r776I/c8bbbH/rbdhnPIBj6DAwXH6zvEqnm3c27GTH\nnnwim1iYMzGeti2kCV+IK6HT6Rh7Q2datwjhnQ07eWVlJnfd3I3h/dsH9NVKzdPpcA66AeegGyg/\ndRLLe95m/uD5bxI8/00cN96MbeYsHLeNkGZ+IYQQ9Ur+qpxPUTB9udW7u/RnG9F5PHiaNqXikTne\nZvvOXa74oYpKK5m3KpMjp0rp0b4Js8fFEOajefpC+LN+0VG0iLDwyqpMPty6v6ppv2fA9of5E0+r\n1lT87k9U/Oq3BG3c4H3t3LaVoG1bcbdth33aTGz3TUOJ1Mby1kIIIfybTBUDdGeLsXyw1Ntsf2A/\nAM74RGwzZ1F55wSwWq/q8Q+dLGHeqkzOljkYHNeaKcMb35ssrV12DESNLeNaHwa0i2D2+FjVPwxo\nbBnXB8Ound5m/hUfoC8v8zbzj7kT28wHcfXrX6uZX/JVn2SsPslYfZKxurSWr/S4XODcE2TIyca6\nYD6WVR+gq6hACQqi8o7x3mb7pL51Wi1n+6483vnY24R/z83dGNavcU5r0dovQSBqjBlXOt288/Eu\nduz2Nu0/PjGOtio27TfGjOuLrrQE84fLsC58G+PePQA4Y+Kwz5yFffxdEBws+TYAyVh9krH6JGN1\naS1fKVzO53QSue0znP+Zh+mH7wBwt++AbdovsE+egtKibs2/iqKw7pvDfPT1ISxVjcTxDdxIrCVa\n+yUIRI014/MXvLAEeRe8iOuqzoIXjTXjeqUomL7ehnXh2wRt3IDO7cYT0QT7pPsIfuJx8pu08vUI\nA5qcw+qTjNUnGatLa/lK4XKekLnPETzv3wA4br4F28wHcdx62xU121/MhUu3qv0psD/Q2i9BIGrs\nGZ+/xLhaVzcbe8b1TZ97wrvoyXvvos8/DVS9Ds+YhWPY8Gt6HRY/T85h9UnG6pOM1aW1fGVVsfNU\njrqd4OYRFA4fg7tLt2t+vKLSSl5d7d0sr3vVvHtfbZYnRGNyXe+WRDax8srqTJZ/vp/cgoqA3tQ1\nEHjatKWwa2ZNAAAgAElEQVTij09T8ZvfY/54HeHvLSBo6xaCtm6puvI9E/vkqXW+8i2EECKwNbq/\n8K6kvvDss/VStBw5VcrcxTs4dLKUG2Jb89tJiVK0CNGAurQJ55mpfenQMpRtGbn8a3k6ZTanr4cl\nLicoiMpxE+Grryjc+i22qTPRF5whdO5zNE+IJmz2gxhTfoSGmRAghBDCTzS6wqW+7Nh9mr++n0Jx\naSV339yNGaOiMRklTiEaWrNwC3+6L5nknpHsOVbM3EU7yD1T7uthiSvk7hND2T//Q0HmHspeeAl3\nh45YViyn6chbaHLbTZiXvQ82m6+HKYQQQgPknfZV8u7mfYjX12aj0+t4bGIcI67r0ChXDhNCK8xB\nBh6+M4bbB3XidLGNF97bQdbBAl8PS1wFJTwC26yHKfpmB8UrPqJy5O0YszIIf/wRmsf3JOTPT6E/\ndNDXwxRCCOFDUrhcBYfTzVvrd7Lmq0M0D7fw1P3JJDTilcOE0BK9Tsf4G7vw4JjeOF0K/1mRwaYd\nx2ig9UdEfdHpcA65mZJFSynckUX5r34LRiPBb7xCswGJhN87gaBNn4Lb7euRCiGEaGBSuFyh4rJK\nXlqaxg878+jWNoJnpvWlXVTjXjlMCC0a0KcVf7gvkbDgIJZt3sd7/9uDy+3x9bBEHXjatafiyWcp\nSNtFyevzcfXtj3nLJiLuu5tm1yViffVldIVyZU0IIRoLKVyuwJFTpTy/aAeHTpYwKKYVv7s3kfAQ\nacIXQqu6tong2Wl9aR8VyhfpufzfhxnStO/PzGYqJ95D8cebKNryFbb7p6HPzyP0L8/QPD6asMce\nwpiW4utRCiGEUJkULpeRsuc0f13ibcK/66au/GJ0L2nCF8IPNAu38Kf7k0js3oJdR4qYu3gHJwuk\nad/fuWLjKfv3KxRk7KbsLy/ibtMWywdLaTr8ZpoMvwnz8iVgt/t6mEIIIVQg78AvQlEUNnx7mNfW\nZKNDx6PjYxk5oKM04QvhRyxBRmaPj2X0wI6cLrIxd3EKOYcKfT0sUQ+UJk2xPfQoRd+lUrx8NZUj\nRmHMSCd8zsM0T4gm5C/Poj9y2NfDFEIIUY+kcPkZTpeb+Rt2snrbQZqHm72f2vaI9PWwhBB1oNfp\nmDCkKw/c3guny83/fZjBlpTjvh6WqC96Pc6ht1KyeDmF2zOomPMb0OkIfvU/NOsfT/j9d2P6fBN4\npM9JCCH8nRQuFzhb7uDvS9P4PiePrm3DeXpaPzq0DPP1sIQQ12hQTGt+PzmJUKuRJZv28t5n0rQf\naDwdOlL+9HPeZv5X/4srKRnzZ5/SZNIEmg1IxPr6K+iK5IqbEEL4KylcznM0r5TnF/3IgdwSBvZp\nye/vTSRCmvCFCBjd2kbw9LS+tIsMZWvqCf7vwwzK7dK0H3AsFirvvpfijZ9TtOlLbJOnoD91ktDn\nnqJ5Qi9CfzUbY2a6r0cphBDiKknhUiVtbz5/fT+VwpJKJgzpwgO398ZkNPh6WEKIetYiwsqTU5JI\n6HauaT+FU4UVvh6WUIkrPpGy/7zmbeZ/7gU8US2xLn2PprfeSJORt2BesRwqK309TCGEEFeg0Rcu\niqLwyfdHeHV1FgoKs8fFMnpgJ2nCFyKAWYKMPDohlpEDOpBXWMHcRTvYeVimEAUypWkzbI88RuEP\n6ZxdtpLKYcMxpu4gfPaD3mb+uc+hP3bU18MUQghxCY26cHG6PLzz8S5WfnGAJmFm/nRfMsk9pQlf\niMZAr9Nx103d+MXoXjhcbv79QQZbU6VpP+Dp9ThuuY2SJSso/CGditmPg8dD8Lx/06xfHOFTJ2Ha\nukWa+YUQQoPqXLh4PB6effZZ7rnnHqZMmcKRI0fqc1yqKyl38I9laXybfYoubcJ5dlpfOraSJnwh\nGpvrY1vzu3sTCbEaee+zvSz5bC9uedPaKHg6dab8z89TkL6bknlv4IqLx/zpJzS5ZxxNByVj/e9r\n6M4W+3qYQgghqtS5cNm8eTMOh4MPPviAJ554gr/97W/1OS5VHco9y/OLdrD/xFmu613VhB9q9vWw\nhBA+0r1dE56Z2pe2kSFsST3Of1ZkUiFN+42H1UrlpPso/uxLiv63Ffs9kzGcOE7oM3+ieXw0oU/M\nwZCd5etRCiFEo1fnwiUlJYXBgwcDkJCQQHZ2dr0NSk17jhbxh1e/oqDEzrgbu/DgmN4EmaQJX4jG\nrkUTK0/en0x81+bkHCpk7uIUcs+U+XpYooG5EpMpfeVNCtJ3U/bMX/C0iMT63rs0G3o9TW6/DfPq\nFeBw+HqYQgNcbg8bfzhC9oEzvh6KEFevrAzTd99gfW0ePPmk3yxSolMURanLHZ966iluu+02hgwZ\nAsBNN93E5s2bMRqNP3u8y+XGqIFVuhZ9vJP1Xx/k1/cmcX1cG18PRwihMW6PwqKPd7Lmi/2EWk38\naXo/4rpJ71uj5XbDxo3w+uvefwGiomDWLPjlL6F9e9+OT/hEaYWDvy36kcz9Zxg5qBOPTIj39ZCE\nuDiHA7KyYPt2+PFH77+7dtX08plMkJMD3bv7dpxXoM6Fy1//+lfi4+MZNWoUADfeeCPbtm276PH5\n+aV1G2E9UxSF8IhgSktsvh5KQIuMDNPMcx6oJGN1fZWZy3v/24OiwH239eCmhLa+HlLA8bdzWH/o\nINZ338Gy7D30xcUoej2OEaOxzZyFc/AQ0OBqlP6WsT84WVDOyyszOV1kI6lHJH+a3l/eU6hMzuOr\n4PFgOLAfY1oKprQUjOmpGLOz0J13RUUJDsYZl4ArMRlXYhLhI24h39LEh4OuLTLy4j3nP3955Aok\nJSWxdetWRo0aRXp6Oj169KjrQzUonU6HxWxETn8hxKUMjmtDz84tmLvgBxZ/uofcM+XcM7QbBn2j\nXoyxUfN07kL5/3uB8j88hWXtKiwL5mP+ZD3mT9bj6tYd+4wHsN8zGSU8wtdDFSrJOVTI62uzsVW6\nGD2wI+Nu7CLvKYTvKAr63BMY01JripT0NPSlJTWHGI24esdUFynOhCTcPXrC+TOkIsPATwrDOl9x\n8Xg8PPfcc+zduxdFUXjxxRfp2rXrRY/XUqUslbv6JGP1Scbqi4wMI2ffaeatzCT3TDkxnZvx0B0x\nBFvq/JmPOI/fn8OKgjHlR6wL5mNetwadw4ESHIJ94j3YZs7C3buPr0fo/xlryJaU4yzbvA+9XseM\nkdEMjGkFSMYNQTL20hUV1ipSTKkp6PNP1zrG1a07roQknEnJuBKScMXEgcVyycfVWr6XuuJS58Ll\namktEC2NJxBJxuqTjNV3LmNbpYv/rssh80ABrZsH8/jEOKKaBvt6eH4vkM5hXX4+lmXvYX33HQzH\njwHgGDAI+8xZVI4aA0FBPhlXIGXsKy63h2Vb9rE19QThwSYenRBHt7Y1V9UkY/U1yowrKjBmZmBK\nT6ma9pWK4fChWoe427StXaTEJ6BEXP2UL63lK4XLBbT2BAUiyVh9krH6zs/Y41H4cOt+PvvxGCEW\nI4+Oj6Vnh6Y+HqF/C8hz2O0maNP/sC54i6AvPvfeFNUS+5Tp2KfOwNO6YReFCciMG1C53cnra7LZ\ndaSIdpGhzJkYS4sIa61jJGP1BXzGTifG3TsxpqXWFCl7dqFzu6sP8TRp4i1SEpNwJfbFlZiEp2Wr\nevn2WstXCpcLaO0JCkSSsfokY/X9XMbbMrxN+wBThvfkxnhZnbCuAv0cNhzYh+Xdd7AsW4K+5CyK\nwYBj1BhsMx7Aef3gBmnmD/SM1XSqsIKXV2aSV1hBYvcWzBrTG0vQT6eJSsbqC6iMPR4Mhw54i5Sq\n6V7G7Ex0dnv1IYrViis2vqpIScaZkISncxfVXjO0lq8qzflCCNEY3RjfhpZNrby6Oot3N+4m90w5\nd9/cDb1eeytKCd9yd+1O+fN/o/yPz2BZvcLbC7N+Leb1a3H1jMY2/QEq756EEhbu66GKC+w8XMjr\na7KpqHQxakBHxg/pgl6Dq8YJ7dOfOokxtaYnxZiRhv5scfXXFYMBd3Tv6ulezsRk3NG9ajfPi2py\nxUWoQjJWn2SsvktlfLrI+2nsyYIK4ro255dj+2A1yx+aq9HozmFFwfjjdqwL3sK8fi06pxNPSCiV\nd0/CNmOW981KPWt0GdeDranHWbJpH3o9TBsRzfWxrS95vGSsPn/JWFdchDE9DVN6avW0L8Opk7WO\ncXXuUrPCV2JfXDGxEOzbnkmt5StTxS6gtScoEEnG6pOM1Xe5jCvsLt78KJvsQ4W0bRHCYxPjiGpi\nvejxorbGfA7rTp/GumQRlkULMOSeAMBx/WBsM2fhGDHauyFcPWjMGV8tt8fD8s372ZJ6nLBgE4+O\nj6V7u8s3OkvG6tNkxjYbxuxM7wpfVUWK8eCBWoe4W7aqtQyxKyERpWkzHw344rSWrxQuF9DaExSI\nJGP1Scbqu5KM3R4PH3y+n807jhNq9b7Z6dFeOxt5aZmcw4DLRdD/NmJd+DZB27YC4G7VuqaZ/xqb\nbyXjK1Nhd/LGRznkHCqkXWQIcybE0eIKP4SQjNXn84xdLgx7dtcUKempGHfloHO5qg/xhEfgik/E\nleTtSXElJTf4Yhx15fN8LyCFywW09gQFIslYfZKx+q4m4y/STrBk014Apo7oyeA4//iD5UtyDtdm\n2LcXy7tvY1m+FH1pCYrRSOXosdhnzsI5YFCdGnMl48vLK6rg5RWZnCqsIL5rcx68ymmfkrH6GjRj\nRUF/+JB3uldqivffrAx0FRU1h5jNuGLiapYhTkzG3aUr+OkGxVo7h6U5XwghVHZTYltaNgvm9TVZ\nLPxkNyfPVDDxpq7StC+umLt7D8pf+Dvlf3oWy6oPsS6Yj+Wj1Vg+Wo2rVx9sMx7APvEeCA319VAD\nxq4jRby+Jotyu4sR13Vg4hD5nW1sdHl5VT0pOzBVXU3RFxVVf13R63H37FW9wpcrMQlXrz71Np1T\nXB254iJUIRmrTzJWX10yzqtaQrWun942JnIOX4aiYPrhOywL3sK8YR06lwtPWDj2e+7FPv0B3D16\nXvYhJOOLO/8q6bQR0dwQd+km/IuRjNVXXxnrSs5izEivtfu84cTxWse4O3aqtVeKMzYeQkKu+Xtr\nmdbOYZkqdgGtPUGBSDJWn2SsvrpmfP58+baRITx+FfPlGxM5h6+cPu8UlvfexbJ4YfUqRY7BQ7DN\nmIVjxKiLLp0qGf9UffelScbqq1PGdjvGnKyaZYjTUzHs34fuvLe9nhaRNcsQJyXjik9Cad68nkev\nfVo7h6VwuYDWnqBAJBmrTzJW37VkfOEKRbPHSdP+heQcrgOnk6BPP8G6cD5BX28DwN2mLfapM7Dd\nPx0lKqrW4ZJxbReuBDhnYhyR1/ihgmSsvstm7HZj2LvHW6Sca6DfmY3O6aw+xBMahishsXqvFFdi\nEp627RpkI1it09o5LIXLBbT2BAUiyVh9krH66iPjq90TojGRc/jaGPbsxrpwPuYPl6MvK0Uxmagc\ncwe2GQ/i6n8d6HSS8XnU2ntJMlZfrYwVBf3RI7X2SjFlpKOrKK8+XgkKwhUT6y1SEpJwJfXF3a27\n3zbPq01r57AULhfQ2hMUiCRj9UnG6quvjHMOF/JG1S7cI6/rwARpAAbkHK4vurJSzB8ux7pwPsY9\nuwFw9YnFNuMBwn45k3xbg/yZ17Q9R4t4dbW3Cf+2fu25++Zu9fY7KOexunT5+bQ4tIvyL772Finp\nqegLCqq/ruh0uHv0xJVYswyxq1cfMJt9OGr/orVzWAqXC2jtCQpEkrH6JGP11WfGpworeHlFBnlF\nNhK6teDBsb2xBDXupn05h+uZomD67hssC+Zj/ngdOrcbjEacvfp4l2yt2l/C3TP6oj0xgWhbRi7v\n/W8PAFOG9+TG+PpdqlzO4/qjKyvFmJmBsaonxZSWguHY0VrHuNt38E71OlekxMWjhF78ja64PK2d\nw1K4XEBrT1AgkozVJxmrr74zLrc7eX1NNruOFNEuMpQ5E2NpEdF4m/blHFaP/tRJLO+9S8jXX6Ck\npqKrrKz+mhIcjCs2vvrTaWdCEp5OnQNurr/Ho/Dh1v189uMxQq0mZo+LoWeHpvX+feQ8riOHA+PO\n7Jq9UtJSMOzdU7t5vnlznAlJmG8YxNkefXAmJKNERvpw0IFJa+ewFC4X0NoTFIgkY/VJxupTI2OX\n28OyLfvYmnqC8GATj06Io1vbiHr9Hv5CzmH1RUaGkZ9biHH3zvM+xU7FsHsnOo+n+jhP06bnNS17\nixmlZUsfjvza2Cpd/HddDpkHCmhT1YQfpdLKfnIeXwGPB8P+fd6pXlXLEBuzs9A5HNWHKMEhOOMT\nqvdKcSYm42nfQXq1GoDW8pUNKIUQQiOMBj1TbutJm+YhLNu8j78vTWXGyF4MjGnl66GJQGUy4YqN\nxxUbD9Nmem8rL8eYlVn1JjIFU2oKQVu3ELR1S/Xd3G3b1VqByZWQiBIW7qMf4sqdLrYxb2UmuWfK\nienSjIfGxhBskbc7DUZR0J84XmuvFGN6GvqymjfGismEq3dMzTLECUnefYkMBh8OXPgD+U0WQggf\nuCW5Ha2aBfP62mzmb9hJbkE5427sgj7ApusIjQoJwTVgIK4BA6tv0hUWVF+RObf3hfnjdZg/XgdU\nNUF36+69IpOY5O0x6BMLFouvfoqf2HusmFdXZ1FmczKsb3vuHtoVg6wkpapa501aCqa0VPT5p2sd\n4+reA0fC6OoiRWvnjfAfUrgIIYSP9OncjKenJvPyykw+/u4IuWfKmTVGmvaFbyjNmuMcOgzn0GFV\nNyjoc0/U6kEwpqdh2bcMy4fLvIec++Q8sWaambt7D598cv5VRi6Lq5rwp47oyU0JbRt8DAGvvBxT\nVkbVMsQ7vNMOjxyudYi7bTsqR4+tuVIXn4AS3jinw4r6Jz0uQhWSsfokY/U1VMZlNievr8li99Fi\nOkSFMmdiHM3CA//TSDmH1VfvGXs8GA7sx5i6o6aYuaBXwRMSiisu/md7FdTg8Sis/OIAn24/SojF\nyCPjYunVsf6b8C8mYM9jp7N2b1RqCoY9u2r3RjVpUnMFLrGvar1RAZuxRmgtX+lxEUIIDQu1mvjN\nPQks2bSXL9Nz+cuiHTw2PpaujbRpX2iYXo+7ew/c3XtQec9k723nVoc6r6fB9P23BH33TfXdPM2b\n11rC1pmQjNKixTUPx1bp4q11OWQcKKB182DmTIyjZdPga37cRsfjwXDoQK0ixZiThc5urz5EsVpx\n9bsu4FejE9omhYsQQmiA0aBn6vCetGkRwvIt+3hpaRozR0UzoI807QuNCwryFiQJSdhnPACctx/H\nub6H9FTMmz/DvPmz6rtd634cZ4ptvLwqkxP55fTp3IyH7+hDsMVU7z9eINKfzD1vCqC3p0lfcrb6\n64rBUN08f+6qWWPb/0dok5yBQgihETqdjmF929OqWTBvfpTNW+t3kltQwZ2DO0vTvvArSmgYzkE3\n4Bx0Q/VtujNnMKWn1CpmLOvWwLo13vvodLh7RntXmjpXzPSOgaCgnzz+3mPFvLYmi9IKJ7ckt2PS\nLd2kCf8idMVFGNPTvFfDqrI35J2qdYyrS1ccw4bX9CrFxIG18e4xJbRLChchhNCY2C7NeWpKX15e\nmcGGbw9zsqCcB0b3xhwkS4UK/6W0aIHj1uE4bh1edYOC/tjRmqlJ6amY0tMw7t6FZfkS7yFBQbhi\nYmvtMbPNFsqiz/bi8cCU4T25OVGa8KvZbN5lrtNTqqd9GQ8eqHWIu1VrKkfeXlOkxCegNGm4niAh\nroUULkIIoUFtWoTwzLR+vLY6i5Q9+eQXpzBnQuNo2heNhE6Hp0NHHB064hg7znub241h396qYmaH\n9413Viam1BSszAdgWFAw3Vp3I3zIICKOl+CK9OBp267x9Vq4XBh276pZJCEtFeOuHHRud/Uhnogm\nOG68uWYZ4sQkPK3b+HDQQlwbWVVMqEIyVp9krD4tZOxye3j/sz1syzhJREgQj02Io0sb7W8CeCW0\nkG+gC4iM7Xbc6RnseP8TrNnp9Mo/QOszx9Cd9/bFExlVtbJVzR4zSrPmDTK8BslYUdAfOljdk2JK\nS8GYlYHOZqs5xGLBFRNXq0hxd+4KATCFLiDOYw3TWr6yqpgQQvgpo0HPtBHRtGkRygef7+OlpanM\nHNWL63rX/5KjQmjRmUqFeTk6jrcbQu8b7qTrnTEUOG0YM9Jr7TFj/uxTzJ99Wn0/d8dO1cv0uhKT\ncMbGQ0iID3+SK6fPO1XVNJ/inUaXkYa+qKj664pejzu6d3Wx5kpMwhXdG0yyOIEIbFK4CCGExul0\nOm7r155Wzay8+VEO/12Xw8mCcsbeIE37IrDtP3GWV1dlUlLh5Oakttx7S3eMBj2KxYTzhhtx3nAj\n56456PLyqouYc8syW9auhrWrgao3+z171VyRSErWxJt9XclZjOlptXafN+SeqHWMu1Nn7DcN9V5R\nSkjGFRvnN0WYEPVJChchhPATcV1b8NSUZF5emcm6bw6TW1DBL0b3wmySpn0ReL7NPsm7G3fj8cB9\nw3pwS3K7Sx6vtGyJY/hIHMNHVt2goD9yuHo1rXPTq4y7cmDJYu8hFguuPrG1ihlVp1fZ7RhzsqqK\nq6relP37ah3iiYyicvjImgUJEhIbbNqbEFpXp8KltLSU3/3ud5SVleF0OvnjH/9IYmJifY9NCCHE\nBdpGhvLMtL68tjqLHbtPk19sY86EOJqGmX09NCHqhUdRWLPtIB9/d4Rgs5GH74yhT+dmV/9AOh2e\nTp2p7NSZynETvbe5XBj27K7ZvyTNOw3LlPJjzfcPj6jZv6SqmKlTQ7vbjWHvnlqrphl3ZqNzOmu+\nV2gYjsFDzls1LQlPm7aNb6EBIa5QnZrz582bR3h4ONOnT+fgwYM88cQTrFmz5pL30VrTj5bGE4gk\nY/VJxurTcsYut4fFn+7h66yTRIQGMWdCHJ1b+1fTvpbzDRT+lrHd4WL++p2k7TtDy6ZW5kyMo3Vz\nladE2WwYszO9xcy5AuPA/lqHuFu2qu4lqb4KUrWEcGRkGPmnS9AfPVLrMUwZ6egqyqsfQwkKwhUb\nd94+NX1xd+0WEM3zavO389jfaC3fem/Onz59OkFVG0K53W7MZvmkTwghGpLRoGfGqGjatAhhxdb9\nvLQklZmje9G/lzTtC/9UcNbOvFWZHDtdRq+OTXn4zhhCrQ3Qf2K14up3Ha5+11XfpDtbXNN3UlWI\nmD/9GPOnH1cf4+rcBVdCItgraL59O/qCguqvndtM01vkVPXT9Orzs5tpCiGu3GWvuKxYsYJFixbV\nuu3FF18kLi6O/Px8Zs2axZNPPkn//v0v+Y1cLjdGo8zDFkKI+rZ95yn++f4ObJVuJg+PZtKwHuhk\nqonwI7uPFPLCwu0Ul1YyYmAnfjkuFqNBY1cicnPhxx9h+3bvvz/+CMXF3q916gT9+0O/ft5/k5Ig\nNNSnwxUiENV5H5c9e/bwm9/8ht///vcMGTLkssdr7RKUlsYTiCRj9UnG6vOnjI+fLmPeqkzOnLXT\nv1cUM0f1IkjjTfv+lK+/8oeMv885xYJPduP2eLj3lu7cktzOPwrvqub/5p1ak49sDKsmfziP/ZnW\n8r3UVLE6fZyxf/9+Hn/8cf71r39dUdEihBBCXe2iQnl6al+6tYtg+67TvLQ0leKySl8PS4iL8igK\nq7cd4K31OzEZdfz6rnhu7dveP4oWqG7+JzLS1yMRotGoU4/Lv/71LxwOBy+88AIAoaGhvPHGG/U6\nMCGEEFcnPCSI301KZPGnu/km+xTPL9rBnAlxdGx18U+vhPCFSoebtzfsJGVvPlFNvE34bVrIviRC\niEurU+EiRYoQQmiTyahn5uhetIkMYeXWA/z1/RQeuL03faOjfD00IQAoLPE24R/NKyO6QxMeGRfb\nME34Qgi/p7HONyGEENdKp9Mx8rqOPDohFp1Ox+trs1n/zSHq2NIoRL05mFvC84t2cDSvjBvj2/Cb\nexKkaBFCXDEpXIQQIkAldo/kySnJNA83s+arQ8xfvxOH0+3rYYlG6oedeby0NJWSCgeTbunOtBE9\ntbdymBBC0+QVQwghAlj7qFCentaPrm3D+X5nHn9flsZZadoXDcijKKz96iD/XZeDQa/j8Ynx3NbP\nj5rwhRCaIYWLEEIEuIiQIH5/byID+7TyTtVZvIOjedpZ+lIErkqnmzfXZrPum8O0iLDw1JRk4ro2\n9/WwhBB+SgoXIYRoBExGAw/c3osJQ7pQWFLJi++nkLIn39fDEgGsqLSSvy1JZceefHq0i+CZaX1p\nGymbMgoh6k4KFyGEaCR0Oh2jB3Zi9rhYAF5bk8XH3x2Wpn1R7w6dLOEvi37kyKlSbohrzW/vTSQs\nOMjXwxJC+Lk6LYcshBDCfyX3jCSySTLzVmWy6suD5J4pZ/rIaExGg6+HJgLA9l15vPPxLlwuD/cM\n7Sb9LEKIeiNXXIQQohHq0DKMZ6b2pUubcL7LqWraL3f4eljCjymKwkdfH+LNj3LQ63XMmRjH8P4d\npGgRQtQbKVyEEKKRigg184fJiQzo3ZIDJ0qYu+hHadoXdeJwuvnvuhw++vpQdRN+fLcWvh6WECLA\nSOEihBCNmMloYNaY3oy7sQsFJZX89f1U0vZJ0764ckWllby0NJXtu07TvV0ET0/rSztpwhdCqEAK\nFyGEaOR0Oh1jBnXikTtjUFB4dVUWG78/Ik374rKOnCpl7uIdHDpZyvWxrfjtpETCpQlfCKESac4X\nQggBQN/oKCKbWJm3KpMVXxzgxJlypo2IxmSUz7jET+3YfZq3N+zE6fJw181dGSH9LEIIlclfIyGE\nENU6tgrjmWl96dw6jG+zT/GP5WmUSNO+OI+iKKz/5hCvr81Gp9fx6IRYRl7XUYoWIYTqpHARQghR\nS5NQM3+YnET/XlHsP36W5xft4PjpMl8PS2iAw+nmrfU7WfPVIZqHm3ny/mQSu0f6elhCiEZCChch\nhMgqyT0AAAqHSURBVBA/EWQy8MuxfbhzcGcKSuy88H4K6fvP+HpYwoeKyyp5aWkaP+zMo1vbCJ6Z\n1o/2UdKEL4RoOFK4CCGE+Fk6nY6x13fm4TtjUDwKr6zM5NMfjkrTfiN05FQpzy/awaGTJQzs04rf\n3ZtAeIg04QshGpY05wshhLikftFRtIiw8MqqTD7cup/cM+VMHdETo0E++2oMUvbkM39DDk6nh4k3\ndWXkddKEL4TwDfmrI4QQ4rI6tw7nmWn96NQqjK+zTvLPZWmUVEjTfiBTFIUN3x7mtTVZ6NAxe3ws\nowZIE74QwnekcBFCCHFFmoaZ+cN9SfSNjmLv8bPMXbSD4/nStB+InC438zfsZPW2gzQLN/On+5NI\n6iFN+EII35LCRQghxBUzmww8dEcfxl7fiTNn7bz4XgqZB6RpP5CcLXfw96VpfJ+TR5c24TwztS8d\nWob5elhCCCGFixBCiKuj1+m4c3AXHrqjD26PwssrM/lsuzTtB4KjeaU8v+hHDuSWMKBPS/4wOZGI\nULOvhyWEEIA05wshhKij/r1aEtnEyrxVmSz/fD+5BeXcf5s07furtL35vLV+J5VON+Nv7MLogdLP\nIoTQFvnrIoQQos46t/ZOJerYMoxtGSf51/J0SqVp368oisIn3x/h1dVZKCjMHhfD7YM6SdEihNAc\nKVyEEEJck2bhFv54XxLJPSPZc6yYuYt3cOJMua+HJa6A0+XhnY93sfKLAzQJM/On+5JJ7hnl62EJ\nIcTPksJFCCHENTMHGXj4Tu8n9fnFdl58bwdZBwt8PSxxCSXlDv6xPI1vs09VLXfdl46tpAlfCKFd\nUrgIIYSoF3qdjvE3duHBMb1xuhT+syKDTT8ek6Z9DTp2uoznF+1g//Gz9O8VxR8mJ9JEmvCFEBon\nzflCCCHq1YA+rYhsauWVVVks27KP3IJy7hvWQ5r2NSJ93xn+uz6HSoebcYM7Sz+LEMJvyF8RIYQQ\n9a5rmwiendaXDlGhfJmey78/SKfM5vT1sBo1RVHY+MMRXlmVieJReOTOGMZc31mKFiGE35DCRQgh\nhCqahVv40/3JJPWIZPdRb9P+yQJp2vcFp8vDgk92sWLrASJCg/jj/Un0jZYmfCGEf7mmwuXAgQMk\nJydTWVlZX+MRQggRQMxBBh4ZF8PogR05XWRj7uIUsg9J035DKqlw8M/laXyTdYpOrcJ4Zlo/OrUK\n9/WwhBDiqtW5cCkrK+Oll14iKCioPscjhBAiwOh1OiYM6cqs23vjdLn5z4eZbEk5Lk37DeDIyRLm\nLtrBvuNn6RcdxR/uS6JpmDThCyH8U52a8xVF4ZlnnuE3v/kNjzzySH2PSQghRAAaGONt2n91VSZL\nNu3l2JlymoXKh19qcbk9bEk5ga3SxR03dGbs9dKEL4TwbzrlMh95rVixgkWLFtW6rU2bNowaNYo7\n77yToUOHsnHjRszmS3+C43K5MRoN1z5iIYQQfu10YQXPL/iBwydLfD2UgBdk1POre5MYnNDW10MR\nQohrdtnC5ecMGzaMVq1aAZCenk5cXBxLliy55H3y80vrNkIVREaGaWo8gUgyVp9krD7JWD1Ol5uC\nCheFhdKsr6be3aLA5fL1MAKavE6oTzJWl9byjYy8+Ea4dZoqtmnTpur/Hjp0KAsWLKjLwwghhGik\nTEYDsV2bkB8u/RZqimxq1dQbEiGEuBayHLIQQgghhBBC8+p0xeV8n3/+eX2MQwghhBBCCCEuSq64\nCCGEEEIIITRPChchhBBCCCGE5knhIoQQQgghhNC8Oi2HLIQQQgghhBANSa64CCGEEEIIITRPChch\nhBBCCCGE5knhIoQQQgghhNA8KVyEEEIIIYQQmieFy/9v515ComrjOI5/pxFvmQ1RrcSYAqFd1CZC\noei+6DaNpEUSRpAIXRahDiWF4Si1iAKbKZDAIoOycqUURRcDkWiiwILIFo4hXQZkatC5vYsXXPoS\nTO8zPv4+u2f35czhHP7nPHNERERERCTraXAREREREZGsl2M64P+USqU4e/YsHz9+JDc3l/Pnz7Ns\n2TLTWdZ5+/YtFy9epKury3SKdeLxOD6fj3A4zNTUFHV1dWzcuNF0llWSySSnT59mZGQEp9OJ3++n\ntLTUdJaVfvz4gcfjobOzkxUrVpjOsc7u3btZsGABACUlJfj9fsNFdgkGgzx58oR4PE51dTWVlZWm\nk6zS09PD/fv3AZicnGR4eJiBgQGKi4sNl9kjHo/T2NhIOBxm3rx5tLS0ZP21eE4NLo8fP2Zqaoo7\nd+4QCoVoa2vj6tWrprOscv36dXp7eykoKDCdYqXe3l5cLhcXLlwgEomwZ88eDS4Z9vTpUwC6u7sZ\nHBzE7/frOvEXxONxmpubyc/PN51ipcnJSQA9QPpLBgcHefPmDbdv3yYWi9HZ2Wk6yToejwePxwPA\nuXPn2Lt3r4aWDHv27BmJRILu7m4GBga4dOkSV65cMZ01ozm1Vez169dUVFQAsGrVKt6/f2+4yD6l\npaVZf9LPZtu2beP48ePTa6fTabDGTps2baKlpQWAsbExFi9ebLjITu3t7VRVVbF06VLTKVb68OED\nsViM2tpaampqCIVCppOs8vLlS8rKyqivr+fo0aOsX7/edJK13r17x6dPn9i3b5/pFOu43W6SySSp\nVIpoNEpOTva/z8j+wgyKRqMUFRVNr51OJ4lEYlb8ULPF1q1bGR0dNZ1hrfnz5wP/nsvHjh3jxIkT\nhovslJOTQ0NDA48ePeLy5cumc6zT09PDokWLqKio4Nq1a6ZzrJSfn8/hw4eprKzky5cvHDlyhL6+\nPt3vMiQSiTA2NkYgEGB0dJS6ujr6+vpwOBym06wTDAapr683nWGlwsJCwuEw27dvJxKJEAgETCf9\npzn1xqWoqIhfv35Nr1OplC7iMut8/fqVmpoadu3axY4dO0znWKu9vZ3+/n7OnDnD79+/TedY5d69\ne7x69YqDBw8yPDxMQ0MD3759M51lFbfbzc6dO3E4HLjdblwul45xBrlcLsrLy8nNzWX58uXk5eXx\n8+dP01nWmZiY4PPnz6xdu9Z0ipVu3LhBeXk5/f39PHz4kMbGxultptlqTg0uq1ev5vnz5wCEQiHK\nysoMF4n8me/fv1NbW8upU6fwer2mc6z04MEDgsEgAAUFBTgcDm3Jy7Bbt25x8+ZNurq6WLlyJe3t\n7SxZssR0llXu3r1LW1sbAOPj40SjUR3jDFqzZg0vXrwgnU4zPj5OLBbD5XKZzrLO0NAQ69atM51h\nreLi4ukPeCxcuJBEIkEymTRcNbM59bph8+bNDAwMUFVVRTqdprW11XSSyB8JBAJMTEzQ0dFBR0cH\n8O8HEfQH58zZsmULTU1NHDhwgEQigc/nIy8vz3SWyB/xer00NTVRXV2Nw+GgtbVVOwwyaMOGDQwN\nDeH1ekmn0zQ3N+sBx18wMjJCSUmJ6QxrHTp0CJ/Px/79+4nH45w8eZLCwkLTWTNypNPptOkIERER\nERGRmcyprWIiIiIiIjI7aXAREREREZGsp8FFRERERESyngYXERERERHJehpcREREREQk62lwERER\nERGRrKfBRUREREREsp4GFxERERERyXr/ALLpGQK5/Mj/AAAAAElFTkSuQmCC
\n",
"text/plain": [
"text/plain": [
"<matplotlib.figure.Figure at 0x11
cd404
10>"
"<matplotlib.figure.Figure at 0x11
74f42
10>"
]
]
},
},
"metadata": {},
"metadata": {},
...
@@ -127,7 +131,7 @@
...
@@ -127,7 +131,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
128
,
"execution_count":
4
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -136,7 +140,7 @@
...
@@ -136,7 +140,7 @@
"5.0"
"5.0"
]
]
},
},
"execution_count":
128
,
"execution_count":
4
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -147,7 +151,7 @@
...
@@ -147,7 +151,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
129
,
"execution_count":
5
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -156,7 +160,7 @@
...
@@ -156,7 +160,7 @@
"13.0"
"13.0"
]
]
},
},
"execution_count":
129
,
"execution_count":
5
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -165,6 +169,53 @@
...
@@ -165,6 +169,53 @@
"scipy.spatial.distance.euclidean([0, 0], [5, 12])"
"scipy.spatial.distance.euclidean([0, 0], [5, 12])"
]
]
},
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another choice is the **Manhattan or cityblock distance**:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scipy.spatial.distance.cityblock(0, [3, 4])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"17"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scipy.spatial.distance.cityblock([0, 0], [5, 12])"
]
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
...
@@ -174,7 +225,7 @@
...
@@ -174,7 +225,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
134
,
"execution_count":
8
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -183,7 +234,7 @@
...
@@ -183,7 +234,7 @@
"0.0"
"0.0"
]
]
},
},
"execution_count":
134
,
"execution_count":
8
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -194,7 +245,7 @@
...
@@ -194,7 +245,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
132
,
"execution_count":
9
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -203,7 +254,7 @@
...
@@ -203,7 +254,7 @@
"1.0"
"1.0"
]
]
},
},
"execution_count":
132
,
"execution_count":
9
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -214,7 +265,7 @@
...
@@ -214,7 +265,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
33
,
"execution_count": 1
0
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -223,7 +274,7 @@
...
@@ -223,7 +274,7 @@
"2.0"
"2.0"
]
]
},
},
"execution_count": 1
33
,
"execution_count": 1
0
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -280,7 +331,7 @@
...
@@ -280,7 +331,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
35
,
"execution_count": 1
1
,
"metadata": {
"metadata": {
"collapsed": true
"collapsed": true
},
},
...
@@ -311,8 +362,10 @@
...
@@ -311,8 +362,10 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 136,
"execution_count": 12,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"outputs": [],
"source": [
"source": [
"table = dtw_table(x, y)"
"table = dtw_table(x, y)"
...
@@ -327,7 +380,7 @@
...
@@ -327,7 +380,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
42
,
"execution_count": 1
3
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -388,7 +441,7 @@
...
@@ -388,7 +441,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
38
,
"execution_count": 1
4
,
"metadata": {
"metadata": {
"collapsed": true
"collapsed": true
},
},
...
@@ -416,7 +469,7 @@
...
@@ -416,7 +469,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
39
,
"execution_count": 1
5
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -437,7 +490,7 @@
...
@@ -437,7 +490,7 @@
" (7, 9)]"
" (7, 9)]"
]
]
},
},
"execution_count": 1
39
,
"execution_count": 1
5
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -463,7 +516,7 @@
...
@@ -463,7 +516,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
44
,
"execution_count": 1
6
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -472,7 +525,7 @@
...
@@ -472,7 +525,7 @@
"10"
"10"
]
]
},
},
"execution_count": 1
44
,
"execution_count": 1
6
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -490,7 +543,7 @@
...
@@ -490,7 +543,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
46
,
"execution_count": 1
7
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -499,7 +552,7 @@
...
@@ -499,7 +552,7 @@
"10.0"
"10.0"
]
]
},
},
"execution_count": 1
46
,
"execution_count": 1
7
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment