Commit 276ca27f authored by Steve Tjoa's avatar Steve Tjoa

audio representation; timbre

parent a7a8e984
......@@ -173,10 +173,10 @@ div#notebook {
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span><span class="o">,</span> <span class="nn">scipy</span><span class="o">,</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span><span class="o">,</span> <span class="nn">pandas</span><span class="o">,</span> <span class="nn">librosa</span>
<div class=" highlight hl-ipython2"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span><span class="o">,</span> <span class="nn">scipy</span><span class="o">,</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span><span class="o">,</span> <span class="nn">pandas</span><span class="o">,</span> <span class="nn">librosa</span><span class="o">,</span> <span class="nn">IPython.display</span> <span class="kn">as</span> <span class="nn">ipd</span><span class="o">,</span> <span class="nn">urllib</span>
</pre></div>
</div>
......@@ -208,7 +208,28 @@ div#notebook {
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Time-Domain">Time Domain<a class="anchor-link" href="#Time-Domain">&#182;</a></h2>
<p>In performance, musicians convert sheet music representations into <strong>sound</strong> which is transmitted through the air as air pressure oscillations. In essence, sound is simply air vibrating (<a href="https://en.wikipedia.org/wiki/Sound">Wikipedia</a>). Sound vibrates through the air as <strong>longitudinal waves</strong>, i.e. the oscillations are parallel to the direction of propagation.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><strong>Audio</strong> refers to the production, transmission, or reception of sounds that are audible by humans. An <strong>audio signal</strong> is a representation of sound that represents the fluctuation in air pressure caused by the vibration as a function of time. Unlike sheet music or symbolic representations, audio representations encode everything that is necessary to reproduce an acoustic realization of a piece of music. However, note parameters such as onsets, durations, and pitches are not encoded explicitly. This makes converting from an audio representation to a
symbolic representation a difficult and ill-defined task.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Waveforms-and-the-Time-Domain">Waveforms and the Time Domain<a class="anchor-link" href="#Waveforms-and-the-Time-Domain">&#182;</a></h2>
</div>
</div>
</div>
......@@ -217,8 +238,7 @@ div#notebook {
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The basic representation of an audio signal is in the <em>time domain</em>.</p>
<p><a href="https://en.wikipedia.org/wiki/Sound">Sound is air vibrating</a>. An audio signal represents the fluctuation in air pressure caused by the vibration as a function of time.</p>
<p>The basic representation of an audio signal is in the <strong>time domain</strong>.</p>
</div>
</div>
......@@ -235,16 +255,12 @@ div#notebook {
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="kn">import</span> <span class="nn">urllib</span>
<span class="n">urllib</span><span class="o">.</span><span class="n">urlretrieve</span><span class="p">(</span><span class="s1">&#39;http://audio.musicinformationretrieval.com/c_strum.wav&#39;</span><span class="p">)</span>
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">urllib</span><span class="o">.</span><span class="n">urlretrieve</span><span class="p">(</span><span class="s1">&#39;http://audio.musicinformationretrieval.com/c_strum.wav&#39;</span><span class="p">)</span>
<span class="n">x</span><span class="p">,</span> <span class="n">fs</span> <span class="o">=</span> <span class="n">librosa</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;c_strum.wav&#39;</span><span class="p">,</span> <span class="n">sr</span><span class="o">=</span><span class="mi">44100</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">Audio</span>
<span class="n">Audio</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">rate</span><span class="o">=</span><span class="n">fs</span><span class="p">)</span>
<span class="n">ipd</span><span class="o">.</span><span class="n">Audio</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">rate</span><span class="o">=</span><span class="n">fs</span><span class="p">)</span>
</pre></div>
</div>
......@@ -255,7 +271,7 @@ div#notebook {
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[2]:</div>
<div class="output_area"><div class="prompt output_prompt">Out[4]:</div>
<div class="output_html rendered_html output_subarea output_execute_result">
......@@ -277,7 +293,17 @@ div#notebook {
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>To plot a signal in the time domain, use <a href="http://bmcfee.github.io/librosa/generated/librosa.display.waveplot.html"><code>librosa.display.waveplot</code></a>:</p>
<p>The change in air pressure at a certain time is graphically represented by a <strong>pressure-time plot</strong>, or simply <strong>waveform</strong>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>To plot a waveform, use <a href="http://bmcfee.github.io/librosa/generated/librosa.display.waveplot.html"><code>librosa.display.waveplot</code></a>:</p>
</div>
</div>
......@@ -1506,7 +1532,538 @@ QmCC
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Digital computers can only capture this data at discrete moments in time. The rate at which a computer captures audio data is called the <em>sampling frequency</em> (abbreviated <code>fs</code>) or <em>sample rate</em> (abbreviated <code>sr</code>). For this workshop, we will mostly work with a sampling frequency of 44100 Hz.</p>
<p>Digital computers can only capture this data at discrete moments in time. The rate at which a computer captures audio data is called the <strong>sampling frequency</strong> (often abbreviated <code>fs</code>) or <strong>sampling rate</strong> (often abbreviated <code>sr</code>). For this workshop, we will mostly work with a sampling frequency of 44100 Hz, the sampling rate of CD recordings.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Frequency-and-Pitch">Frequency and Pitch<a class="anchor-link" href="#Frequency-and-Pitch">&#182;</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Dynamics,-Intensity,-and-Loudness">Dynamics, Intensity, and Loudness<a class="anchor-link" href="#Dynamics,-Intensity,-and-Loudness">&#182;</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Timbre">Timbre<a class="anchor-link" href="#Timbre">&#182;</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p><strong>Timbre</strong> is the quality of sound that distinguishes the tone of different instruments and voices even if the sounds have the same pitch and loudness.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>One characteristic of timbre is its temporal evolution. The <strong>envelope</strong> of a signal is a smooth curve that approximates the amplitude extremes of a waveform over time.</p>
<p>Envelopes are often modeled by the <strong>ADSR model</strong> (<a href="https://en.wikipedia.org/wiki/Synthesizer#Attack_Decay_Sustain_Release_.28ADSR.29_envelope">Wikipedia</a>) which describes four phases of a sound: attack, decay, sustain, release.</p>
<p>During the attack phase, the sound builds up, usually with noise-like components over a broad frequency range. Such a noise-like short-duration sound at the start of a sound is often called a transient.</p>
<p>During the decay phase, the sound stabilizes and reaches a steady periodic pattern.</p>
<p>During the sustain phase, the energy remains fairly constant.</p>
<p>During the release phase, the sound fades away.</p>
<p>The ADSR model is a simplification and does not necessarily model the amplitude envelopes of all sounds.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython2"><pre><span></span><span class="n">ipd</span><span class="o">.</span><span class="n">Image</span><span class="p">(</span><span class="s2">&quot;https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/ADSR_parameter.svg/640px-ADSR_parameter.svg.png&quot;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[6]:</div>
<div class="output_png output_subarea output_execute_result">
<img src="
TUUH2ggSCjoUh/XO7gAAIABJREFUeJzs3Xl8VNX5+PHPuZMEIiDu+4rFWlNFMjcBKa3SWqvV1q60
tZtWkgmg1q11RcZ9X75WJRO02sVvW+z3Zzdba1uxlSIwd4KAVCt1qXXXCgoYSDL3+f1xJ3EyGZI7
k7mZzMzzfr14wZw598xzyZ3JM+eeBZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSiml
lFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRS
qiKYYgegKlCUm4Bz+pQZLmI+1xQnIKWUUqqyVBU7AFVhouwHzO1XLoSHPxg1EGmmHZic5+FbgHd6
/xieQXAAB2g3bbxXoDCVKhtRogmgPo9Du4CNqT//AVbhvdd+EyX6duEiVOVEewDV8IpyL/DtLM/8
mygHDG8waiAS4TRcJgGHYPggsC+F+czoAP6AodXE+FMB2lOqLFzGZU2CHAZ8EDiEob/nuoDfAhdG
iT5TgBBVGdEEUA2fKB/G+2Zq4fUMje/zfA27cBH/LUJkygdpZiVwREbxXqaNV3vrRLF4hXF4P9td
EA7HMBk4Bji0f6OswHCmaWN5gKErVZKiROOAnV5mYR1+KZeuSatTBWxvYe3r4oaBmcCx9P393gWc
EyV6+zCErUqEJoBq+ET5LXAi8C6GCxDuzKjxKaI8XITI1CAkShWvsAkYlVb8X9PGLr7baKIBw1zg
W/T97EkCl5o2ri5MtEqVvihRC++W7nZpxV17sueYCJGugY69nMs/6uL+DNg7vdxgTp/P/DsKH60q
RVaxA1AVIsp0vOQP4CaEv2SpZWcpUyPBS0ykb/IH8GQuTZiFxE0bpyDMAJ5LeyoEXCXN/GCIUSpV
NkKEDqJv8gfwz8GSP4BLufQxvF73jvRyQa6PEt2vcFGqUqYJoBou16X+fotabgH+BWzOqKMTQUYq
w2FZStdkKRu8qYX8FYuPAS9kPHW6NHN2Pm0qVW6SJIf0nosSfRrIvOW7HdA0lLhU+dAEUAXvMk4C
pgFguJrz2UgUl/4fZtoDOHJl+2WUUw9gOtPKy3g9FJmzga+R2Xww33aVKhcGU4j33P/LUnZCHuGo
MqQJoArWIkJI79iu/7Bjn3F/qzJq70fU/5gyNaz6/zKS/HoAe5g2ngVuyigeRZLLhtKuUuVAkMMz
ywwm1/dctpm/++cXkSo3mgCqYP2Db/P+7M/LOZOtvc+ZfgkgGL0NPCJluwU8Ov8ewF5VXI83Izzd
l2QOewy5baVKW7/3nCC5JoCbspSNzS8cVW40AVTBiTIaiKYePQPc2+d5wxNZjtLbwCOMzGEscGBG
8YvmB7w71LbNnWxC+q0FGKKLLwy1baVK1c3cXAsclFG8cT7z/51LO1VU7ZqlWBeGVoAmgCpIhjPw
FjIFmEeU7j7Pu6wBpE+Z7ggy8nRTR/8lo4Z0+7cPi4f6lRk+VrD2lSox7/JuHf1/Pz9pMJKt/ra4
uB/IUvxCvnGp8qIJoApGlB0QLkw9Wsl87s9SZxPwbEap9gCOPNnG/w399m+PZNae4P6LRitVIQo0
AQQXN9uEj7/mHpEqR5oAqqBcAOwIgOFiDNv65pr5y39fribbbQtVPAVbAiYr4a0spftmKVOqIhRi
Ash1XDcOb9H1Piys+4YQmiojmgAWX3WxAyi4KHsBZ6YePcZ8/jBA7f4TQTr1NvAI0z8BtArYAxji
zSylYwrWvlKlZ8gTQDrouBzYPaP4V+nbyKnKpglgcVUBf6D8ftldBtSm/n3RgDWzzQTW28AjTeYv
o27e5qmCtb4XnVlKcxrrpFSZ6ZcA1lCTyyLQ5wFnZRS/CkSGGJcqI1XFDqDCzQE+AZwPXFrkWAoj
yiHAqalHvyfKkgHrh3giY2oI6I4gI4bMYQ+6+63NuM7cnzVpy8+L1Gb5JMrcJUapihAluhuwW0bx
qxdx0X8HO/YKrjgwSfIW4KSMp14METp2HvPeKFScqvRpAlg8uwD/k/r3POCHlMfsrKvx9nYV4OJB
a1/Cf4iynp7xgh7tARwpkllu/5oCjv8DGM0OWb4E6FIVqiIZzGHSvwO835CLKNHtgB0srP0FaRTk
+CTJT9L/zt7Pa6g58yIuyjbUQlUwTQCL5/KMx9cDM4sRSMFczhRcPp96tIho1tmd2awCjk57vA9R
diOKflstNqHfYHQKOQEEwGXPLKXPF/Q1lCod2d5zn4wSzToswsXNVvwe8GsL65ZLuTReyOBU+dAE
sDgOB5ozyr6MlwQ9OtzBFIzLdal/dRNiXg5HPkHfBLBnR5CBJo+o4RHsEjAALtnWKvtnQV9DqRIh
SLZZ97m4anu2v+oczukoSECqbGkCWBy34t0mzXQL3u3P5PCGUwBRPg0clXp0L/NYl8PR25oIoglg
8QW7BMy2XkN4vMCvoVSp6Pd+sLDqL+XSlZnlUaLXA9/LKJ6syZ/yQxPA4fdFYMY2njsCmAXEhi+c
AohiAdeklcwiyqwhtak7ghSdfJkQ/Rdkfo82nivsC/HRjH1GBNHFalXliRK16P+eS7q4WWfdhwgt
SJI8l77j/o6/gisOmse8zEX2lepDl4EZXqOBGwapcwWwwzDEUjiGr5N93MpQ6ESQYtuFD+Bds+nW
mgIu0SJnsD2Gxj6FhuXmLl4q1GsoVSpChA4CtssoXhcluiVb/XnMe57+d0pMkuTcIOJT5UV7AIfX
ucCBg9TZFYjSfw2nkSlKDdI7oWUTNUzgoqwL+w7WzpNAXVrJ3lzF7lzM64UIU+XBzXr7t7Dj/7bw
JUzGYujCjwv6GkqVCBc350lXBnOHIJlbvp16AzfM+x7f0+WU1DZpD+Dw2RtvezQ/5gCHBBhLIc0B
Dkj9++a8kj9P/3GAXXobuMiGY/xf5sK0/wV+VODXUKokZJsAMtgWcJdy6UP031N9h/d47xuFjE2V
H+0BHD7XAGN91q3GmyhyXHDhFMB1jKOjd62//wI35d2W4QmEkzNKbeD3ebc50lzGCfS/vfMW81lc
jHB8yDY5o2AJoET4JJJx+xeuMm28V6jX8B1LM+OBY7M8tca08fRwx6P6qAY+l6X8WaB9mGMJWs5b
wBmMRIneScbnryBzKbXx5AVwGZf1+5wV5J0o0YeLFNKIpQng8JgK5Ppt7FPACcCDhQ+nQDr4PqR2
iTBcw3zezbstyToTuLx6AIU7gf0ySpcAHy1CNIOTLAlgdWFuAUsz1UjvQug9/gHcXoj287AfsChL
+YXAtcMci+prO7L/bBbg3YEoJ/3ecyFCg37pGsWoe7ay9Ure34IT4LDLufyoS7m0oiZUCZLtc3YN
hR+nXvL0FnDwDN6OH2awilncAhnjo0aKq9gdODv16GWEO4bYYrZFo3UiSJFIM9sBEzKK3zJ38lph
XoCbgA+llWzFcLJpo6sg7StVYm7m5lrgoIzizZdwyaCz7i/kwvXA/2aWu7hnFCg8VYY0AQzet6Df
bS6/JgJnFjCWwuliPjAm9ehyomSdpeabt+vHqxmlexFljyG1q/Ij1JH5+VCgBaCliTkY0n8xCUKT
iWXtBVaqImxi04fp/zt5rcH4mnVvYWX7En5SlOg+Qw5OlSVNAIM1lr7r4+XjUvpvDF5cUT4Avev8
/QtvH+NC6J8AmGG5DVwDWXejqGSBTACRCOdj+tzmFeAss5Cf+Dh88lBfX6mRysUd0nsutVB05gLq
VUDLUOIKgL6PRwhNAIN1MWTd5zQX2wNXFSCWQrqK929NzyNKd4HaLdZt4FpgLd4ajX4n6pQ3kyUB
tPLvAZRZ7CPN/BrhWt4fDrEFw9dNG7f5bOZHwO/QZF2Vp5xnAGeRbQxt023cNiq/kALhAG30jB9X
RaMJYHAOxP+yL4OZxUiZEHE5Ybx9iwGeYD6/KGDr/XsAh29HkBrgPOBt4Dvoe6MgPYDSwgHSxE1Y
PA18Nu2pJxBsE+NnOTZ5ArAOuJFSWzBdqYHlPAM4i18Cb2SU7bae9TPzjqrwLKAJeBNvbdya4oZT
uSr9l1yQbi5we7eQ30SSwnLTenAMl2AKtysEI2MiSDVwN7ACb/Z2peqfABosmc0EmcXucgbbyxmM
Em8bQOTL1Mgp7CARDpUIn5EmrpBmluLyHIZzeH+86KsYIqzHNgtZm2NM6ftnnws8jSbrqnwMeeH1
KNFOYGFmuSCn5xtUwG7E++I/spc8K1O6DEwwJuNNOX8ebzr6v7PU2YO+axV1Qtbtr/YFXsZbSPoY
4E8FjdSPy/g2wrHAdNKn1wt3E6UdSAD3Ec1jvbTLOB7hE8Ck1J9MexLlJbyEbAVwO1E25X4SOQsD
S4Gf4/XkvjgMr1kU0sxhCCdicTDCB4GDgZ37VXRZAnjp1tZU2SsgzemNpf7u+1WlG3gMuAu438Ty
numb+WVjd7xk/XTgu6nXUGrEu47rxm1hyymCHIq39++hZL8l+lSU6DPAMwbzjCAPRolm+6Lcq4qq
WDfdF9D3C1NjlOhrwGpgtcH8aT7z/1ig0xmqQ/C2s3sIbwesfxY3nMqhCWAwVtJ/On+m3+Hdzurx
T0biOkXeVm8Lyb4cze7A8ak/yyGPBNBbPmaw7fH2Bj4PfJrC96wOxABfw7t1eU3qtTuG8fWHy5kY
ZhWoL7cL7wvL88ATGJbTzZ/M3bxdgLbdbZRPBv5KBSTrqjx00PER8DX2dSe8OxFTxXuDvk72OyW9
LuGS/0SJ/gbvMzPd7sAngU8KUg2MlASwx3F4CeoPgCuBDcUNp/xpAqgGFqWTIMdoRPutNTcSjcH7
QGoGvkf2RWlLlmmjCW9MTi8Bw5ex2BGLTkJYVOMSYgwh3sMihEVNWj+foYsuOmijw/TvqRsOPcn6
54DrgOspz2RdlYEo0YcIcEhPlOgXgmo7YDV4wzu+DVyE18O/rS9+aog0AVTKv/2AXwCzgXPwenrL
kgHhfpJAEq9Xb2jrPA6fWiCKNzbwArxewWIkpEqp/O2CN1O457P20aJGU6Z08LRSuTsabymDGLqU
wUi1H97OCH9F1x1TqlRNBhbjfZHL3N5NDZEmgErlx8K7JbwOXcpgJPsoXrJ+N94YKKVU6fkK3hjz
K+k7eVINgd4CHmluYxSb9QIfVn9iex7J++gd8JYymIW3N/JD+TYkX6aGXXqXS1EZqlsJded3M9fC
uyX8BbxfID/Am3WvykSU6NhRjBqZ+6arPi7kwnwPrcXbXOGb6PCOgtAEcKRZz3cQ7ix2GBWlEYaQ
APYY+lIGO/Ilktw35EjK1Id2hDVDm0vck6y34C0b8/sChKVGhp9vZesJg1dTZaBneMeZwFygvbjh
lC69BaxUYR2Hd6tCd6oYuT4APIiXsB9a5FiUUvmZircG7d0MfcvViqQJoFLBOBevF/CDxQ5EbdNx
eLsQfK3YgSil8vYd4BmgodiBlBpNAJUKxqN4CYauaj9yvQh8C28skVKqNK0EPgPEix1IqdExgEoV
1ouU4WLRZaYDXSxaqVL3FrpY9JBoAjjSCL/FW1pEDZf1jAF+NcRWNjPU7eKqeIQuPjnEOMrWvzfR
xuDbBg5E0O3iytUlwK3FDkL5MtT97DvR7eIKQhPAkSbKS8BLxQ6jwowfwrEFSyrMnbwGvDaUNsrc
piEcuxJv5u9jBYpFjSBRogPuj6vKRv6rLKh+hjUBjMVi1XgzJA8EXBH5Q0tLy2eGMwalCigBnA4s
K3Ygaptew1s77F70NpFSpeopvC3h8l5nVfU33JNAZgET8DbBDhljpg7z6ytVCK8Cp+GtIKjJ38jU
CdwEfAj4IZr8KVWKNgDnAUegyV/BDVsCePPNN9fijdNIt8udd945YbhiUGqIOoEbgIPRpGIk+x1Q
h/eLQ8cIKVV6XLy91ififZHTnXsCMGwJ4JgxY04H9gJ+2icAy5oyXDEoNQQP4CUV32doY9FUcP4B
HI+3JMS/ihyLUio/jwI23o49bxU3lPI2LAngbbfdtj1wvoj80XXdH6Q/Z4xpHI4YlMrTP4BP4e0j
q0nFyLQBb2D4JPQ2kVKl6kXgy8AMvElbKmDDMgmkpqbmXGBn4JKOjo61Y8aMSQKh1NP9EsBYLLYf
sBzYI634N5FI5KTW1tZPAhekEkeDt95aJBKJdLW2tn7aGHM+3orgHcANkUjkWgARMW1tbXGgPnUc
ADvuuGPV+vXrz8Vbuy0E3N7c3DzfGKObTFe2t4F5QBvQXeRYlKc643E33s9nPtpToFSp2gRcy1CW
0FJ5CbwHMBaL7WKMOdsY8+uWlhbnnHPO6cCbCdxjcjQa7ZOIRiKRF13XPSmjqa5YLHaxMeZhY8zH
gbHAGOBUETmttbX1MmPMg8DHgFpgJ+CahQsXhgGMMRKJRGzghbQ2Ozds2HAV3qKwuwA7AvNisVik
YP8BqhTdibeF251o8jeSdKX9+1G820Rz0eRPqVL1M7z9uK9Ck79hF3gCaIy5EBhrjLk0rTi9e7d2
zz33PDzzuFAo9OGMoo8Bn3Bdd3fgnszXMMZ8FG+M4Q/Tn3NdN9zz7x//+MdjgAPSnq52XXcT0JTR
3qzBzkuVpcV44/w0qRi5nse7HT8Dbx9fpVTpiQNHAicD/ylyLBUr0ARwwYIFe4vIHBG5v6mpaXVP
uYj0ub8vItnGAdZlPHaTyeQXZ8+e/Qbexs/pQsDnI5HIq2TsoiEivb/It2zZcihpt3+B53baaadr
LMv6bUZ7hw54YqrcdOIlFR/HG/OnRqbr8D4XHih2IEqpvJ0GTEWX0Cq6QMcAWpZ1KVBjjJmfXm6M
WZnxuBFoTS8TkcwewJvnzJmzPvXviRl1b25paXkn23OhUOiptId9kkpjzKMzZ85MRqPRN/fcc88+
oW/7rDwLFy6cKiKfSz18urm5+V6Ae+65Z4eurq4LeupVV1dHTz311C0AsVjsLGPMHgA33njj9s88
4+WxdXV1HH744XvMmDHjWuCJ5ubmnwMsWLDggFAo1JI6xy2RSCTa024sFosaY0YDJJPJ1tmzZ78A
0NbW9lW8NZNwXffRlpaWh1LlRwBfTbX1WiQSuTUV7+iurq7edqurq6899dRTNwC0tra2WJZ1QOr/
6ldNTU3LUnEdHQqFjhvs3Jubm3v/nX7uInJvJBJ5OvUax1mWdXSqfFkkEvlVlnPf0DOWM/Pcu7q6
bp07d+5rmeeeTCYfmj179qOZ5+667gstLS2t2zj3P/T8rHI99zvuuGOP6urqs7Zx7hcYY3Y4+7Wz
d9jsbibdrqFdD7iq7apr0889FosdYow5Jdu5t7W19f4749xPAQ7JPPf06zTj3H1dp8DPm5ubn8hy
7r3Xafq5Z7lOLzDG7JCKq/c6jcVin+tZBzT9Os04997rNHWOhwGHpeLtvU7Tzz39Z+X3PZr+s9qW
9OuUEn6PDnKdjsj36BtvvBE9//zz+/1MJkyYUHfBBRf0vGZO12mWc++9TtPPPf06LYX3aJ7XaSHf
o73nPsh71M08dwr0u+S1s1/bwd3cd4Uua7y1R9sNbdcG/B49pOfnUCoCSwBjsdhBwHfwkqmnYrHY
QNWzLQXTJwE0xixOezgpo+5ftvHc1pdffrm3RzBLUrkG4NBDD61av359evmbAwUL4LruZKDnU+lB
vJ0G6Ozs3D6tnM7OzmuALamH3xGRwwD23XfflT0J4MEHH8zRRx+9q4icD/wv3tZiWJa1T6oM4B0g
mhbCWSIyPlXvd6TGNorIZ/C61UlNZHkoVX5oWlxrSO2b2dnZOSoj3jtJrZ1mjPm6iExPHf9vUt/Y
LMuamhbXNs8db3u0Hr3njrcd19Op1zgqra0FpPbkzTj3F/EGCfc796qqqvtIbZ+Wfu6WZW3AGyfW
59yNMUtIfdnIcu69P6tcz72qqmrXtPLMc58tIvuNMqPYTN8EcHxofM959p47cNC2zj39NTLO/UvA
CZnnnn6dZpy7r+sUWA08keXce6/TjHPPvE5ni8h+qeN7r1PgWBGZnYqr9zrNOPfe6zTz3NOv0/Rz
T/9Z+X2P0vdnlVXGdVqy79FBrtMR+R4dNWrUWWSx8847TxSRj6Ue5nqdZp5773Wafu6kXaeUwHs0
z+u01N6jA16nZpQh42MWa6zV87MP8j16KKmfQ6kIsgfwcrzbrR/qydDTxWKxF4D9Uw8Pufvuu8ed
dtppG8HL/js7O/dKq56srq5eA5CaMJLek9e10047PbWN556KRqPpg/j79AC6rvskwH//+99dLev9
Tj8RKakfolJKKaVULgJJAGOx2GF43aQ/yZb8pazi/QTQ6u7utvEG4dPZ2ZnZU/dMT9f3Xnvt9UER
GZ323NMzZ87szPacMWZ1Rjt92hWRNQChUOhDIu+v+mKMGXQtMWPMP0SkLfVwTU95KBTalEwme8rZ
vHlzZ9oxvxSRxwFeffXV3mT0hRdeYMWKFW83Njb+UkRWpLX1Wk9bItJnhpSI3GuMqe2pl1b+iDFm
U+r1ettyXfdflmW1pcpfTo9vzJgxvfGGQqH0RY5/Q2pMnDGmd2yciDxhjBn03DP+v3rPHe8bc0/5
irT/xyXZzh1vSZas5+667ttp5b3nnp7Ep587aWv5ZZ57+s8q13N3XffttNfI9L/GmF2NZU4l2Xd4
QXV1NTvvvPNmEdmYVvwi3vIm/c49rbzPueN9Q325J8aewozrtPfc/V6nruv2HpN+7unXafq5Z16n
eL0QO6Ve87W08iWkloJKv07Tzz39Os0894zrtPfc039Wft+jfqRfp6X8Hh3oOh2p71HXde8FTsmM
d8OGDS8Av+05Ptu5b+s6zaL3Ok0/d9Ku0/RzZ4S+R/O5Timx9+hg16l0ysl4q4T0ct9z3wZ+GeR7
tLa2tuTWiTWDV8ldLBb7NXC8ZVkfbGpqen4bdS7HW2etx4U94yhaW1tbjDELeoM05mfNzc0np447
Gbgv7bifRiKRb27jufMikchNqefG03dbqDcikcjuAG1tbVeISM82de+EQqEJs2bNynxTF9rvSHWJ
p6wB+s2GVuXBcZzLT/zLifNe63itT/kROx3BXdPu6nl4d3d39zlTp059d9gDrHDSzGF4t9IyXWja
+tzaVMMv87O7xwJgzjDHoka4KNF/A/tlFK+JEtXfrxkKPgs4FotNAT4L3LWt5A/AGNNnCQdJmwls
jKnLeC79luwRA7TT5zkRWZ1WL7PNJwGi0aglIl9Lq3fRMCR/qoLE4/EP03c8y7acVlVV9WQ8Hv9k
0DEppZSqbAVPAEXkamBLVVXVlQO+sGX1SQDTt4QzxmROAEmv22cCiOu623wuFAqlf6PPXFbm2UWL
FtXsueeeVwAHpcpuam5uvnOguJXKxaJFi0LGmIVAjc9D9jXG/DGRSLQuWbJkXJCxKaWUqlwFSwBb
W1s/E4vFXknt0jG6u7vbaWtruzBb3ba2tgeTyeSKjOK9Y7HYqwsWLPiIiGQu15LeAzhQkpeZHK6O
xWKfg/4zgI0xTevXr98KnA0sEZHPRSKR8/ycq1J+HXTQQWfgrXmVCyMikdGjR69KJBIfDyIupZRS
la1gk0BaWlp+S2pA7mCam5tPGKTKbtt6IhKJ7JHPc/TvAfz85s2b/5jamk6pglu5cuUByWTyiiE0
caCI/Dkej99ZU1Nz/qRJkzYPfohSSik1uEAXgh5h0nsABfh/Y8aMMW1tbZNF5HLgGGPMeSLygDHm
RyIy3Rjz3ebm5oXpjbS1tU1L1Z+Ctzn9c0CV67pfmD179pOtra13GGPmAJ3V1dX7fOc733mzra3t
UyLyEGkTT1T5SyaTrWTMRsuDMcbM7erqOq69vf079fX1fytEbEoppSpb4HsBjwS33377zkB64vUS
7y/4+A0gAowSkRtFpCUUCp2SetznFnZbW9scEfmbMeaF7u7uPV3X/QTwIWD/119//WmAlpaWucDj
QE1XV9epqUOrgXd7Vk9X5S8ej38T+FQBmzzIdd3F8Xj8Fsdxtitgu0oppSpQRSSANTU1meP/1gEH
AFsty7qhu7t7I97/RSgUCt25ZcuWd1OPe9dmi8ViM0TkdmDJK6+80jx37txNoVBox9TTfRacNsbc
lPpnc2tr6zkicrUxpqG5ufkPwZ2lGina29t3NcbcHEDTljHmLOCJFStWTAugfaWUUhWiIhJA+o//
extvDcT2pqam16uqqnqeT2Q8Tt8f7vt4g/OviEajPRsNHgb9l7R55ZVXHsC7NXyQZVlf2bp16/Tm
5uZnCnlCauRyXfdWYBc/dYW0Fcj9m2hZ1mOO49ywePHi0YNXV0oppfoq+wQwFov9SURuSS8TkS+k
/u6ZAHJY6vGT6Y+B5WmHTQWorq5On73cc1yfBWT33nvvXUntRigiu+2xxx46eL9COI5zAqk9JP14
asNTDvBwHi9lAeeNGzdupeM42fbSVkoppbap7CeBRCKRfovqxmKx/wHONMb8OlXU05PXJwEUkfQE
cAyAZVldPQUiMin1d28C2NraOsl13Z8bY25OjSE8cP369V8A7i/cWamRKLVu34JBK6bpdDu3hsPh
49rb25tE5EYg17X/DgGWOI5z0/jx4+dPnDhxa47HK6WUqkBl3wOYTc+agJZlPTnQ44wEsB2gs7Pz
tFgsNr61tfVW4FB4fy3C1tbWTxpj/m5Z1tzU7OG7U+2cMywnpoqqtrb2amDfXI8zxkg4HG6zLOsw
4JE8XroKOP+dd95JtLe323kcr5RSqsJUZAJojDkMoLu7+8mBHluW9UDPMSISwduv91bgL8aYPwFJ
ANd1f5w67j5gjIi8DVBVVXUPkDTGTI3FYrrDSBlbsWLFNBEZ0r6k9fX1/w6Hw8fg7W+az7CBOtd1
H3cc54q1a9f63XlEKaVUBTLFDqCC/Q5IXxB7DaCbVZegdevWjXrnnXfaSfUIb8uJfzmR1zpeyyxe
QpSPZhYuX778wKqqqntE5Kg8w1olIqc2NDSszPP4iiLNHAaszvLUhaaNa4c7HtXHeGBDlvIFeF+W
lOoVJfp/dC/EAAAgAElEQVRvYL+M4jVRovr7NUNF9gAqVUgbNmy4kEGSPwBXXHewOj2mTJnyfH19
/ceB7wLv5RHWJGPM8kQiMd9xnOo8jldKKVXGNAFUagji8fiHjTFZ97zOtLl7c7ZejG0yxri2bd8W
CoWOAJbkEV61iESB5YlEQr/9KqWU6qUJoFJ5WrRoUcgYsxDwM97u0c3dmzfl8zqTJ09eFw6HjwLO
BfLZu3qyiMQTicRFixcvLvuZ/0oppQanCaBSeZowYcJcUutDDmJLKBRqHsprpXoDbwbqgWV5NFEj
IleNHTv28fb29kFvVyullCpvmgAqlYf29vb9gat8Vr9s8uTJ6wrxurZtP/3cc89NBy4AtuR6vDHG
dl233XGc8xctWhQqRExKKaVKjyaASuUhmUy2AmN9VF25cePGGwv52jNnzkzatn2dZVlhY0w8jyZG
AddOmDDh747jHFLI2JRSSpUGTQCVylEikfi6MeY4H1W7gVkzZszoDiKO+vr6f7z77rvTjDEXA515
NDEFaHcc51wR0c8CpZSqIPqhr1QO2tvbdxWRW/3UFZFbbNtuDzKeGTNmdIfD4asBG8hnzb9a4MZE
IvG3lStXTixsdEoppUYqTQCVyoHrurcCu/io+mxXV9f8oOPpYdv2GrwevflA1yDVs/lIMpl8wnGc
72pvoFJKlT/9oFfKp3g8/mngZB9VxRjTPG3atHyWbMmbbdtdtm1f7rpuI7Aqjya2A25tb29/JB6P
TyhweEoppUYQTQCV8mHt2rVjjTEL/NQ1xtwTDocfCTqmbWlsbHyitra2EbgSbxxiTkTkKGPMasdx
5oiIbheplFJlSBNApXzo6Oi4mv77S2bzanV19XlBxzOYurq6Ttu251mWdSTwZB5NjAHuSCQSf165
cuUBhY1OKaVUsWkCqNQg2tvbjwTm+qkrImccfvjh6wMOybf6+npn/PjxNnAtefQGAh9PJpOrE4lE
s/YGKqVU+dAEUKkBrFu3bpTrugvx9175VUNDw/8FHVOuJk6cuNW27QuB6cBTeTQxTkRiiUTioRUr
Vuxb4PCUUkoVgSaASg1gw4YNFwJ1Pqq+Y1mWr17CYrFte/nGjRvrgRsBN48mjrUsa008Hj+twKEp
pZQaZpoAKrUNK1asqDPGXOinrjHm+/X19a8EHdNQzZgxY4tt29+zLGs6kM/2dOONMXclEonfP/HE
E3sXOj6llFLDQxNApbIQEcsYsxCo8VH3b/X19QuHIayCqa+vf7yzs3NSalHrnHsDReT47u7uNY7j
fDuA8JRSSgWsqtgBjHSxWGxPY8yFInIcsA9QG4lE+gyGb21tPckY8yvLso5sampaVpxIVSElEom5
xpgjfVTdUlVVNcsYI4EHVWCpdQrPTiQS/09E7gEOyrGJHYF7E4nEF0SkxbbtVwsfpVJKqSBoD+AA
7rjjjj2AuIicAUzE2zYrm38AJJPJrw5XbCo4juPsB1zts/plkydPzudW6ogRDocfq66unmSMuR3I
OZEVkc8CTzqO42eRbKWUUiOAJoADCIVC84BBxzm99957LwEYYz4SeFAqcMaYVmCsj6pPbNy48cag
4xkOkyZN2hwOh88APgE8n0cTOwH3xePx/1u2bNnuhY1OKaVUoWkCOABjzKf81Ntnn306U//8QIDh
qGGQSCS+LiLH+6iaNMbMmjFjRj5r641Ytm0v3rJlyySglTx6A40xX6iqqnrScZwvFz46pZRShaIJ
4MD2NcZc6brugTU1NbXNzc1Z/7/Wr1/f00s4bhhjUwXmOM4uqUkRftwSDocTgQZUJNOnT99o2/Zs
EfkU8GIeTewCLHIcZ5HjOLsUODyllFIFoAngwKSrq+u62bNnv3DqqaduGWCg/6zU3+8OV2AqELfi
JS+DeRaYH3AsRdfQ0PCn7u7uw4C7yaM3EPgysDaRSHyhsJEppZQaKp0FPLBXq6qqftTa2npjVVXV
P7fffvtN69evR0RMW1tbrTHmQOCbIvK9VP18xk6pESCRSBwnIl/3UVUsy4rU19e/F3hQI8DUqVPf
BWYlEolfishd+BgTm2E3Efk/x3F+1tnZefq0adPeDiBMpZRSOdIewAEYY/4GfMEYszSZTP53/fr1
WwHa2tpcYLOIPCki5/P+/+NfihWryt/atWvHikirn7rGmHvq6+sr7uccDocfwtsR5Ud5NvG1mpqa
J+Px+GcLGJZSSqk8aQI4ABH5HyDps/pm4PYAw1EB6ejouArY30fV16qrq88LOp6Ryrbtd2zbPgU4
Echnzb89jTG/dhznR6tXr96xsNEppZTKhSaAA4hEIu1AC9A1SNVNwFcikUg+A+ZVEbW3tx8JnO6z
+pmHH374+iDjKQW2bT/Y2dn5YRH5aZ5NfKuzs3NNPB7/dEEDU0op5ZsmgIOIRCJ3WZY1yRjzA2A1
sBGvV/AdIAFcD9RFIpEHiximysPatWtrXNddiL/3wa9t274/6JhKxbRp095uaGj4JvB54PU8mtjb
GPOg4zh3OY4zvsDhKaWUGoROAvGhqanpKeDMYsehCmvLli0X4o1rG8w7VVVVc4OOpxTZtv0rx3GW
GGN+ICL57IRzGnCs4zizbNt+uNDxKaWUyk57AAsoFovpVlglor29/VARudBPXRE5/4gjjng56JhK
lW3bb4XD4a8BM4E38mhiX+CheDweW7Jkia6lqZRSw0ATwMK6pdgBqMGJiCUiC4FRPur+zbbttmEI
q+TZtn1/dXX1YcaY/8vjcGOMaR49evSaRCLx8YIHp5RSqo+KvwUci8XyWeBWlTDHceYYY6b5qLrF
dd2mARYAVxkmTZr0BvCleDz+VWPM7cDOOTaxv4j82XGc1urq6u9NmjRpcwBhKqVUxdMeQFVRHMfZ
zxhzjc/ql0+ZMuWZQAMqUw0NDT/v7u6uM8b8Jo/DDTC7q6tr9YoVK44qdGxKKaU0AVSVZwEw1ke9
VcCNAcdS1qZOnfp6OBw+yRjzTSCf5XMmWJb1iOM4/+M4znaFjk8ppSqZJoDZCbAV6MzxOJ3FOII5
jnMy4GftuaRlWbNs2x5s/UflQzgc/qllWR8G8lkqycKbgf+E4zjTCxuZUkpVroofAwi8GolE9sr2
RCwW+6NlWd9rampaPVgjsVisWUQ2Fj48VQiO4+wC3Oqz+q319fVOkPFUmvr6+leAExOJxCkiciuQ
69p/E4G/Oo5zS2dn57xp06Z1FD5KpZSqHNoDCKcM8FxdVVWVrzFg3d3dvzHGzClMSKrQjDE3A7v6
qPoscGnA4VSscDh8r+u6h4nIQ3kcbgHn1tTUtCcSiamFjk0ppSpJxSeAkUhkoNu2u3R2dvr6P9pu
u+02AEcUJipVSIlE4lMi8k0fVUVEWmzbfi/woCpYY2Pjf2zb/rQxphl4N48mDhGRJY7jXLt48eLR
hY5PKaUqQcUngINw8bkDSGdn52lATbDhqFytXbt2rIjE/NQVkXsbGhr+HHRMCowxEg6HF1qWdbgx
Jp//8xBw/rhx4xLt7e12oeNTSqlyp2MAB/YycE1ra+tHjDE/TiaTiS1btrx69tlnb7n//vur33zz
zd2rqqrCItKzC8JLRY5XZejo6LgK2N9H1de7urrOCzoe1Vd9ff2/ReTYRCLRAlwH5LoTyKGu6z4e
j8ev32677S6rq6vLdeKWUkpVJO0BHEBPz4Qx5kRgUSgUenbMmDHvtbW1uevXr99aVVX1IvCAMWZm
6pDHixas6ic1TszXHr7GmDOnTZv2dsAhqSyMMWLb9oJkMjnJGPPXPJqoMsZc1NHR4cTj8ckFD1Ap
pcqQJoAD6O7uvgHwO9tQgNsCDEflYO3atTWp7d5Cg9U1xvwmHA4vGoaw1ACmTJnyfH19/Qy8YRf5
jMM8zBiz3HGcyxzHqS5weEopVVY0ARzAnDlznhORLwDvDFLVFZHzIpHIkuGISw2uo6PjfODDPqq+
EwqFdPb2CJHqDfwBcDiQz/upGm8W9/L29vZJBQ1OKaXKiCaAg2hpaXmoqqrqUGPMlUAc2AAkgU3A
P4CY67p2S0vLzcWMU70vkUh8CLjYZ/ULjjjiiJeDjEflzrbtZ8Ph8FHGmLPx3wufbrLruiscx7lk
8eLFOtZZKaUy6AejD6eddtorwLzUHzWCiYiVSCQWAqN8VH8sHA77miGshp8xxgVujcfjfwDuMcYc
mWMTNcAVY8eOPSkej5/a0NDwZOGjVEqp0qQ9gAXU1tY2rdgxVDrHceYAH/FRdYuINBljJOiY1NA0
NDT88/nnn/+oMeb7wJZcjzfG2MYYx3GcC7Q3UCmlPJoAFpCI/LLYMVSyFStW7GuMudpPXRG5sqGh
4Z9Bx6QKY+bMmclwOHyDZVlhYHkeTYwCrhk3btwSx3EOKXB4SilVcvTb8ABisZj2DpUQy7IW4G8d
udXGmOuDjkcVXn19/T8WL148ffvtt/++iFyKv1v96aYAKx3HmRcOh29O3WZWSqmKoz2AqizE4/Gv
ASf4qJq0LOs027a7go5JBWPGjBnd4XD4ahGxgfY8mhgN3OA4zpKVK1dOLHB4SilVEjQBVCVv+fLl
OxtjbvVZ/db6+non0IDUsGhoaHhy48aNU4D5QM47gBhjjkwmk6sSicRZjBqjn4VKqYqiH3qFswXQ
MWVFEAqFbgZ281H1uerq6vlBx6OGz4wZM7pt277csqxGYFUeTdSKyC1PH3f73YWOTSmlRjIdAziw
lyORyD6DVWptbf2MZVnnNzc3Tx+OoNT7EonEp0TkWz6qioi0TJo0aXPgQalhV19fv2rt2rWNHR0d
FwMXkeNnm1tdGw4mMqWUGpm0B3AAInKsn3qu6y4RkY/EYrEZQcek3rd27dqxItLqs/qPGxoa/hRo
QKqo6urqOm3bno830UPX/FNKqQFoAjiAlpaWf/ipFwqFXAAROS3YiFS699577wrgAB9V3+js7Dwn
4HDUCGHbdvv48eNtEbka6B5SY8YyhYlKKaVGFr0FPEQLFizYW0SuM8ZgjPl4seOpFI7jTAHO8FPX
GHPGtGnT3g44JDWCTJw4cStwcTwe/7Ux5h7g0HzaeblhztVO0ymHAS8WNEDl21tvvTXquOOOK3YY
SpUdTQAHkMc6gLsGEojqw3GcamAhEBqsrjHmN+FweFHwUamRqKGhYcXixYvDY8eOvdwYcw4+rpks
vlbouJR/o0ePLnYISpUlTQAL6z/FDqBCnA8c5qPeu11dXXODDkaNbDNmzNgCfL+9vf0B13XvAT44
1DbPOusDLFkyfujBKQBuvfVfTJ/+Tk7H7Lrrrju9+eabAUWkVPnTMYAFZIxZWOwYyl0ikfgQcInP
6hdMnTr1pSDjUaWjvr7+8c7OzsnGmFsA3QGkxE2fPv3z8Xj8mGLHoVSp0gRw6Lrw1v8775VXXrmu
2MGUMxGxRGQh/rb/WhIOh/3OEFYVYtq0aR3hcPgc4Cjg2WLHo/IXCoVqjDG/j8fj3yl2LEqVIr0F
PLBXI5HIXsUOQnkSiUQL8BEfVbcCTcYY3ctZZWXb9hLHcQ4HrgVOB3S2b2mqNsbcHY/HD7Jt+xJ9
zyvln/YADsB13ZOLHYPyLFu2bB+8X9Z+XGnb9tNBxqNKn23b79m2fabrujMs6X652PGo/BljLkok
EvetW7fOz90BpRTaAzig2bNnP1rsGJSnqqpqATDOR9XVgN6KV741Njb+9b0LJ34RWOb3mIMPfo/O
Tu00LJQddhjaco0pX3vnnXf2Xbp06Um67JNSg9MEcACxWOyJSCRyxGD17rzzzgmhUOhZ4PuRSOSG
YQitoiQSia+IyIk+qiZd153V2NjYFXhQqqzU/nfde7nUnzPnlaBCUUMzvaamZlkikfh0OBz+V7GD
UWok0wRwYJP8VNpll11eWr9+PcDnAU0AC2j58uU7i8htfuoaY25rbGyMBx2TqhzjXnH+97UjTvlV
sePIx7nnnnv8F7/4xfi0adPeKnYsQ9Hd3X0WMC2HQyaKyOPxePxzDQ0Nfw8qLqVKnSaAQ3TPPfeM
3rBhQ88stLqiBlOGQqHQzcBuPqo+X1VVNS/oeFRl2f6lZWts276/2HHkYU/gh3/961/HAF8pdjBD
9DCwIcdjdjHG/DmRSJwSDod/EURQSpU6TQAzZO7+MdhuIJ2dnekPa4OIqVI5jnMs8C2f1VsmTZq0
Och4lCoh1wBjgZnA7cBjxQ2nKEaLyM8cx5lg2/Y1xQ5GqZFGZwEX1nPFDqBcrFq1agzgdx2/H9u2
/XCQ8ShVQhqBb6c9/h8q97PeAFc7jrNw8eLF2uGhVJpK/VDYJhE5mfwXiL27kLFUsu7u7iuAA31U
faOzs/PsoONRqkQYvIQv3WSg0hdLnjVu3LgHly1btn2xA1FqpNAEMENLS8vPgA8BZ+B/u6hXReTy
V1999abgIqscK1asaBCRM/3UNcacqUs+KNXrG8DULOVXA2WV/Lz++utP5XjIsVVVVUscx9kvkICU
KjHaJZ5FJBLpAm6PxWJnRiKRg4sdTyVxHKcaryc15KP673SAt1K9xuKN/ctmV+BS4LzhCydYjz32
2KPAT4Cr8L+Ty2HA44lE4rPhcDgRVGxKlQLtARzYz4sdQAU6H+9DejAbu7u7ZwcdjFIl5AJg7wGe
PxMoqy+0tm1fY4z5GrAlh8P2EpFHE4nEZ4KKS6lSoAngACKRyKW51I/FYrp13BA4jnMIcInP6hdM
nTr1pSDjUaqEHAicO0idauDmYYhlWIXD4V+IyDFALusdjhWRB+Lx+OlBxaXUSKcJYGHdUuwASpWI
GGAh4Gcvz7+Hw2G/M4SVqgQ3AKN91DsBOC7gWIZdQ0PD340xRwLrcjgsZIz5QTwev2XRokV+hpwo
VVZ0DCDQ1tb2eRFpBVwRaWlpafk1DL4GoCqcRCLRAkz3UXUrMMsY43eCjlLlbgbwxRzq3wL8BSir
LRPD4fC/li5dOrWmpubX+PssAcAYc9aECRP2X7Vq1Td1LVFVSbQHEBCRBXi7TexhjIkVO55Ks2zZ
sn2Aa31Wv9K27aeDjEepEhICbs3xmEOAuQHEUnTTpk17e/z48ccAP8vx0M93dXU9smLFij2CiEup
kUgTQFV0oVDoTvwtUbEGuC7gcJQqJc3A4XkcNx9vZnDZmThx4tZwOPx1Ebk6x0MbLct6fMWKFbql
p6oImgACxpjZwBvAayISKXY8lSSRSHzFGONnNl4SaLJtu6xuWyk1BDsAVxTh2BHPGCMNDQ0Xi8hp
5Har+wDLspa0t7d/IqjYlBopdAwg0Nzc/ADwQJanXo1EInv5bScWi71WuKjK39KlS3cSkdv81BWR
HzQ0NCwPOialSshlwM5DOH4W3naLTxQmnJGnoaHhh/F4/EVjzC+B8T4P28F13T8kEonmcDh8b4Dh
KVVU2gM4sFNyqWyM8bV7hfLU1NTcjDf2cjAvbLfddvOCjkepEvIhYM4Q2whRASsXNDQ0/Nl13Y8A
L+ZwWLWI3OM4zuWpFQqUKjuaAA4gEok8nEt9EdEeVZ/i8fgngW/5rB6pq6vbFGQ8SpWYWynMHZyj
gS8XoJ0RrbGxca3rulNExMnx0HmJROIn69at87M8lVIlRRPAwir7b9OFsGrVqjHGmFb8bd/0Y9u2
c0rElSpznwGOLWB71+NvDcGS1tjY+FpNTc3RwK9zPPTrGzZseHjp0qU7BRCWUkVT8T1Wutbf8Ovq
6rocmOCj6hvJZPKcoONRqoSMAm4qcJsHAN+jjCeF9Jg0adLmRYsWfXHChAk3422N54sx5mM1NTWP
O47zadu2nw0wRKWGjfYAqmG1YsWKBuC7fuqKyFlTpkz5b8AhKVVKzgAmBtDufAbeR7hszJw5M2nb
9nfxPoeSORx6MLCsvb39yGAiU2p4aQKoho3jONWWZd2FN/h8MA82NDTkupirUuVsDyCoyVAhKmyN
Tdu2bxORLwC57P6xi+u6jziOU/bjJlX50wRQDRsR+T7+Fq3d6Lru7KDjUarEXIm/BdPzdTIwNcD2
R5yGhobfGGOOAnJZwms08It4PP79gMJSalhU/BhAclzrbyCxWOz1QrRTjuLx+AeNMZf4qWuMubCx
sfE/QcekVAnZHm9B47bBq37rZBg9tm/ZUyvgMT/r/U0GluUeXukKh8MJx3GmAA8CH/Z5mDHGXBeP
xw/atGnT3BkzZnQHGKJSgdAEMMe1/gZxdgHbKhsiYhKJxEL8zTT8e319/YKgY1KqxLwL+OwV/9Fx
QEYCyANg/O63XXFs237RcZzpxphfisgxfo8zxjSPGzdu/yVLlnx5+vTpG4OMUalCq/hbwLmu9TdI
W/9bqLbKSSKRiAAf9VF1qzGmyRjjBh2TUkqls237HRH5tDHmhzke+qnRo0f/fdmyZfsEEphSAdEe
QB/a2tqOEZFTgUZgT7ylGDYAa4EHk8nkXXPmzFlfzBhHqtSHot/B5VeFw+GngoxHKaW2JbXX+GmJ
ROJZEbkSf2uVAhxWVVW1PB6Pn9jQ0LAywBCVKpiK7wEcTGtr6x0i8ie8AdIfAMbgJc67AEcB14dC
obULFy6sqMHTflVXV9+Bv4HrT9bW1lbULESl1MgUDoevFpGTga05HLaXMeZvjuOcEFRcShWSJoAD
aGtr+6oxxs9+m3u6rvvgggUL/OxrWzESicRMEfmsj6pJY0xTXV1dZ+BBKaWUDw0NDT8HjgFyWYt0
LPBrx3GGuk+zUoHTBHAArus25VB9J8uyzg0smBKzdOnSnUTkNp/Vbw+HwxU181ApNfLZtr0kFAod
CazL4bAQcIfjODeJiP6OVSOWXpwDMMYcgbf0wgIRORbYa8cddxzV3Nxsbd68eTvXdQ80xnwGuAdv
RXnt+k+prq6+EdjdR9UXamtrfS0Po5RSw23y5MnrgGnA33M89JxEIvHLpUuX1gYQllJDppNABraD
MeZrzc3Ni7I81wG8kPrzu7a2tr+ISOtwBjdSxePxY4wxp/ipa4xpqaur2xRwSEoplTfbtt9avHjx
MWPHjr3XGPOVHA79fE1NzaPLli377NSpU3WdWDWiaA/gwN4RkQf8VNyyZcsvgYr/prdq1aoxxpgY
PmbPGWN+Eg6H/zgMYSml1JDMmDFji23bXwOuyfHQxqqqqsfb29sPDSIupfKlCeDA4pZl7eSn4qhR
o0YDb2Z7LhaLPVbQqEawrq6uy4AJPqq+KSLnBB2PUkoVijFGbNu+CGjCGx7k14Gu6y5JJBIfDyg0
pXKmCeAAjDFtrut+wk9dEZlojHl6G0/73V6opLW3t9vAWT6rn2Xb9ltBxqOUUkGwbfsu4ETgnRwO
21FE/uA4zrcDCkupnOgYwAGIyLXAB2Kx2H0+62+NxWKb8bY8q6jk2nGcatd178KbATeY39u2rbum
KKVKlm3bDzuO81Hgd8B+Pg+rAe5xHGdCOByOGmMkuAiVGlhFJSl5+ECO9UcB21GZ/6/nAZN81Nvo
um5L0MEopVTQbNteA0wFEjkcZoBLHcf58dq1a2uCiUypwVVioqIKbPny5QcDl/qpKyIXNTY2/ifg
kJRSaljYtv1qbW3t0SLy21yOM8Z8Y8uWLQ8vXbrU1zhzpQpNE0A1JCJiQqHQXXi3vQdkjFlq2/ad
wxCWUkoNm7q6uk3PP//8540xt+dynIgcVVNT83fHcQ4KKjaltkXHAA7s9UgkssdQG4nFYmW7/lMi
kYgAH/VRdasxpskY4wYdk1JKDbeZM2cmgTMSicSzInIj/sZDAxwCLE0kEifpjkhqOGkP4ABE5OwC
NVWodkaUJ554Ym/gWj91jTHX1NfX/yPgkJRSqqjC4fCtwJeAzTkctpuIPBKPx78UUFhK9aMJ4ABa
Wlp+lkv9BQsWHJ2tPBKJlOWM1+7u7juA8T6qrh09enSui6cqpVRJsm37V67rzgBey+GwWmPMLxKJ
xPeCikupdJoAFpBlWWWZ6GXjOM6XgZN8VE0aY2bV1dV1Bh2TUkqNFI2NjXHLsqYCa3M4zBKR6x3H
WbB48WIdoqUCpRfYAKLRqLXXXnudLyLfAfYHqosd00iwevXqHTs7O2/zWf0OHdeilKpE9fX1/165
cuX07u7uXxpjfG0qkNKy/fbb779kyZKvTJ8+fWNgAaqKpj2AA9hrr70uEZGr8dYD1OQvZevWrTcB
fibH/Lu2tvbioONRSqmRavLkyRuMMccD9+ZynIgcP3r06MeWLVu2TzCRqUqnCeAAUj1/Kk08Hj/G
GHOKn7rGmJa6urpNAYeklFIjmm3bXbZtnwrMA3LZ/WNSVVXVshUrVhwRUGiqgmkCOLC9ix3ASOI4
znbGmFa8lewHc184HH4o6JiUKl1iQD4GcjnI70D+BfImSGfqz0aQV0BWgvwG5HqQb4IcXOzIVX5s
274S+AawNYfD9rYs62/xePz4gMJSFUrHAA7sDWAv4Cfd3d0Xz5kz56WB9m6MxWLlvsPFZYCfBUvf
As4KOBalSpRYwGy87RMPGKBiNTAW2BM4AvhMqvxVvM8lVYJs2/7fRCLxHxH5FeB3F5BxxpjfOo5z
um3brUHGpyqH9gAOQEQWA1RVVc2dO3fufwbbuDsUCs0YnsiGXyKRCON/PcPv2rb9VpDxKFWaZA9g
OXA77yd/jwCnAgfjLatUA+yGt8fsuUA8o5E1wxGpCk44HH4smUweCTybw2EhYIHjODeIiP7uVkOm
F9EALMu6F2Dr1q2+ekq7urrKcrDu4sWLq0TkLvytbP9727YrZjkcpfyT3YBHATtV8C5wEphPgLkX
zDow74LpAvMmmOVgbgbTCHw2rSFNAMvAlClTngGmisjjOR56Xnt7+6KlS5fWBhGXqhyaAA6gubn5
z8aYFZZl+erZK9d1AMeNG3ce3i2owWzCu7WllOrvVuCDqX+7wJfA/Mbfoea3qWMAVhc8MlUUtm2/
tWnTpo8D9+dynIh8saamZvGqVat2Cyg0VQF0DOAARMQsXLhwuTHmR7FY7OdU4FIwy5cvPxiY77P6
Rf6yo/EAACAASURBVLZtvxhkPEqVJgkDX0sr+CWYP+XYyFagFu0BLCszZszYIiJfSSQSzwHn53Do
lK6urmWO43zatu2ng4pPlS/tARxAW1vb90TkDLyB2BWX/ImIsSxrITDaR93Hw+HwHcMQllKlaGbG
4x/n0cZWoBvQPbXLjDFGbNu+wBjTjPcz9utAYOmKFSuOCig0VcY0ARxYU7EDKKb29vYmY8zHfFTt
FJEmY4w7eFWlKlLmLhBOHm1sBdaByWUJEVVCwuHwQuAEIJfdP3a0LOvheDz+zYDCUmVKE8CB7V/s
AIqlvb19LxG53k9dY8zVjY2Nuex3qVSlyVxT9O3cmzB7gDm0INGoEcu27YeBjwAv5XBYjTHmR4lE
Yr6I+FmnVSkdAziIt4HdqcB1AF3XvQNvSYrBrB09evQ1QcejVInbOePxrsArxQhEjXy2ba9pb2+f
4rru74DJPg8zIhJNJBIT1q5d21RXV9cZZIyq9GkP4MAqch3AeDz+ReBzPqq6lmXpB41Sg8u8pefn
/aUqWH19/Su1tbUfAx7M8dBvdXR0/HH16tU7BhGXKh+aAA4gNQECy7L8rH9Hd3d3TbARBW/16tU7
GmNu91n9jvr6+lzXsFKqEv0743EURLeaVAOqq6vb9Nxzz50kIrlOsDu6s7Nz6fLlyw8MJDBVFjQB
HEBTU9MjwJKurq5j/dQ3xjwccEiB6+rquhHYw0fVF2tray8KOh6lykTmZ8OuwF9AKnacsfJn5syZ
yYaGhtNF5BzeXwvSj0NCodCyeDzeGFRsqrTpGMABxGKxp4ADROQXsVjsF8WOJ2iJROLjInKqn7oi
Mruurm5T0DEpVSbagHPou5zUB4GVIKeDKctF5FXhNDQ03JJIJF4QkZ8C2/k8bDdjzKOJROIb4XD4
/wUZnyo92gM4sEPwsQZeOVi6dGmtiLQBfmaQ3dfQ0PD7oGNSqnyY54AbszyxI3AfyOLUYtFKbVM4
HH5ARGYAr+dwWK2I3O84zrlBxaVKkyaACoDq6urLgIN8VH0LOCvgcJQqR/OAbX1xOhqIg/xExwaq
gTQ0NKxIJpNHktuC4BZwo+M4dy5atMjXmHZV/jQBVDiOU2+MOdtPXWPMWbZtvxV0TEqVH5MEPs+2
dwExwDeAf4J8D0R/UauspkyZ8nxNTc104JEcD5190EEH/Xbt2rVjg4hLlRYdAziwVyKRiO9v47FY
rOTW9Vq8eHEVcDc+rgUReci27fuCj0qpcmU6gW+D/Bm4hf7rAwKMAa4HZoJ8FcyzwxmhKg2HH374
+rVr1x7f0dERA07xe5yIHN/R0fFYe3v7CfX19SX3O0sVjvYADsAY8+Uc638pqFiCMm7cuPOAI3xU
3RQKhVqCjkepymB+gjfGuBVIbqOSDTggU4YtLFVS6urqOsPh8HeAS4EB16nNcITrussTicThAYWm
SoAmgANobm5emkv91OyskrFy5cqJwHyf1S+ur6/PXMtMKZU38xaY2cDhbHux3x2AP4J8YPjiUqXE
GCO2bV9hjPkW3n7Rfu0jIksSicRxQcWmRjZNAIcoFotVt7W1fTUWiy0DSmbRTRExyWSyDR+znEXk
8eeeey7XhUiVUr6Yf4A5Efgk8EyWCuPxZgrrHq9qm8Lh8E9d1/0Uue0zPU7+f3v3Hx9XVed//HXy
oz9pA8gWCgt8oVSEQkszMyWGsFIB3VUQ5EdUXFiwpamg/KjAgqJWQZAfX+XLz05AZNEFKSjrLiyi
QGCBAp2ZFIqFopQWQQsiRSiYH03mfP+4N9vpZJKcm8nNzcy8n4/HPJK593PufKZNTj5z77nnWPtf
qVSqJay8ZOxSAThMyWRyp2Qy+XVgvbX2TqCkLtO0t7cvxLvzcCjd1trTm5ubB7pMJSIjwjwEzAFu
KbBzHnDM6OYjpWbevHmPAYcAQcaN1hhjlqVSqSut1YeMSqICMKCbb755dmtr6y3Aa8D3gJKbsqG9
vX1Xa+2VLrHW2svnzZu3JuycRATAdII5HbiqwM7Pj3Y2Unri8fja2traRmttoGU6jTHnZzKZ5StW
rJgYVm4ytuguYAdLly6t2mWXXY42xpydzWbnR51PsbLZ7PV4Y4uG8sL2229/edj5iEg/FwINwKE5
2xoiykVKzJw5c/68YsWKw8eNG3c7EOTmxBNqa2t3a29vP6a+vv6tsPKTsUFnAAeRTCbrksnkudOn
T3/ZGPMfwEDF32qgBfjb6GU3PKlU6ni8uciGks1ms6fPnDkzyKBiERkRJos3FUyunaPIREpTY2Nj
RywWa7bWFjqbPCBjzEez2exTqVRq37Byk7FBZwALWLZs2cyqqqqv+uviDjRhZg9wr7X2+sWLF/8P
QDKZdJpMOSqrV6/eobu7+zqXWGPMjfPmzQt0F7SIjKin855viSQLKVnGGAtckEql1hljrsf9b/4M
Y8yKlStXHuePK5QypAIwx7Jly440xpwNfGqIwbCX1NTULFuwYME2k2haa8d0Adjd3X0lMN0h9LWO
jo6vh52PSHmzK4B6MMNdT3xz3nOtwCPDkkgkkqlU6g/GmLuAKY7Ndqyqqnowk8ksjMViJTXFmbhR
AQgkk8kW4Cxg/0HCHjbG3GCt/UVLS8u3CgUsXrz4V6EkOALS6fR8YIFLrLV2cVNTU/4fHxEJ5gCK
G2azY97zDUUcSypcIpF4oL29/dBsNnsf8PeOzcZba29Pp9N7xWKxS/0zilImNAbQs4zCxd+7wLW9
vb0faWlpOWLRokX3jnJeI8K/q6sVb63RodyRSCQGWrBeRJzYPfHOtBQzrcacvOdtRRxLhPr6+udq
amoagGcDNDPAdzOZzK1r1qwZF1JqEgGdASzsOeDGiRMn/vspp5zyQdTJFGv8+PFLrXVaSeAvVVVV
54SekEj5O8D/WsyH7H/Ke35fEccSAeCggw7645o1aw7t7Oxcbq3N/xkbzKkdHR17rF69+oTZs2e/
E1qCMmp0BnBbWWPMtzdu3Fjf0tLSWg7FXzqdrrfWLnGJtdYu0a3/IiOiyALQ7sy2QzYeALOqyJxE
AJg1a9b769atOxq4KWDTj3d3dz/+zDPPlMyqVzIwFYCAMeY4a+19QNZa+53p06evTyaTl7a2tn44
6tyK0dbWVoO3qoDLmd4HE4nET0JOSaRSHLD1W3tBsKa2FrgTmOxv6MCbF1BkxDQ3N/fG4/EzgPOA
bICms6qrq1ekUql5IaUmo0QFILBo0aJ7Fy9efHRPT8/u1toL8Trcb1hrX1q2bNlTy5YtW3zjjTfu
EHWeQU2ZMuVrwFyH0Perq6sXh52PSAXJKQC5AuwNYOuGbmb3AB5h65yjFjgZzOoRz1AEiMfj/9da
24z3d8/VLsaYtkwm4zKnrIxRKgBznHnmmW8sXrz4ipaWlo8YYw4xxvzIGDPLGHNTdXX1xtbW1rsB
li5dWvCMWjKZPHF0Mx5YJpPZB/i2Y/jFc+fO3RBiOiKVZnze8zOA9WD/H9gjvUu8tgbsFLB7gT0R
7G3A74Emv81bwFFgfj6KeUsFSiQSP8f70PHnAM0mWWvvSaVSY3r6MxmYCsABLFq0aMWiRYsWTpw4
cbox5jTgGWvt8QDTp0//UzKZvL61tbUxr9l3Rz/T/qy1xlrbCris6fj0K6+8cn3YOYlUmIOAc4GX
crbtgDfd1K+BN/Amdn4PeAVYDvwLMM7fdg1wIBjdkS+jIh6PP9Pb29sArA3QrMoY84NUKnX98uXL
q8PKTcKhu4CH4N8IchtwWzKZnAF8CTgFONNae2Yymdxgrb3TWnsHsFuEqf6vTCazgIGXrcvVba09
vbm5uTfsnEQqi+nGK+KuATsXOAKvKDwA2AmYivcBbTPwDl5BuBJYgXfDh+bhlFF38MEHr1+9enVj
d3f3L4DDXNsZY87ce++991yzZs0XZs2a9X54GcpI0hnAAFpaWta1tLR8Y+PGjXsaYz4F3A1MN8Zc
VFVV9TzuM6yHpr29fVfAde3HKxKJxG/DzEdEzCowV4H5Ipg5YHYDMwVMDZgdwOwNphHMOWCWq/iT
KM2ePfudiRMnfhK4PWDTozo6Oh7z/wZJCVABOAxLly7NLlq06IGWlpbm6urqXYGzCTaxZmh6e3uv
A7Z3CH2xrq7ue2HnIyIipWXWrFndsVjsVGPMUrwbkVzVZ7PZp9Pp9IEhpSYjSAVgkRYuXLippaXl
2paWlrnA+ihzyWQyxxljjnMIzVprT585c2ZX6EmJiEjJMcbYWCz2HWvtqUB3gKa7A0+m0+lPhJOZ
jBQVgCOopaVl76hee9WqVdtba69zibXW3pRIJJ4MOycRESltiUTidmvtJ/HGqrqaAtyfyWRODykt
GQEqAMtEb2/vlYDL2IvXurq6Lgo7HxERKQ+JROJRoJFgV7lqrLWt6XT6+9baYtbElpCoACwDqVTq
MGChY/iXm5qaNMhcREScxePxtbW1tQ3AMwGb/msmk/lZW1vbhDDykuFTAVjiVqxYMdEYczPg8gnr
zng8fn/YOYmISPmZM2fOn7u7u+cbE3hy8uapU6c+nE6ndwolMRkWFYAlbty4cd8G9nEIfbu2tvac
sPMREZHy1djY2FFfX98MXB2knbW2EXh61apVM8PJTIJSAVjCUqnUXOBrLrHW2iVz5swJssyPiIhI
P8aYbDwePx9vicMgCwnM6O3tfTqTyRwaUmoSgArAEtXW1lZjjLkFt9Vcfp1IJIJO6ikiIjKgeDx+
k7X2aCDI6h87Wmt/k06nTworL3GjArBETZ069Vyg3iH0/erq6paw8xERkcqTSCQeyGazhwJ/DNBs
PPDTdDp9cUhpiQMVgCUonU7PsNZ+xyXWGPPNuXPnbgg5JRERqVDz5s17tqenpwF4LkAzA1ySSqVu
TafTtSGlJoNQAVhi/PmUbsZbSH4oz6xbt85pcmgREZHhamhoeL2zs/NQY8wDQdoZY06z1j6QTqfr
wspNClMBWGIymcwCYL5D6Bbg9Obm5iADdEVERIalqalp83vvvfcZY0wySDtjzOHAk+3t7XuGlJoU
oAKwhKTT6enAlY7hV8Tj8efDzEdERCTX/Pnze2Kx2GJjzAWADdB0VjabfXrlypWJsHKTbakALCHG
mOuAHRxC19bV1V0adj4iIiKFxGKxq6y1zUBHgGa7VFVVtaXT6WPDyku2UgFYItLp9LHW2uMdQrPW
2oUzZ87sCj0pERGRASQSiXuqqqoOB4LMQTsZuCeTyWjhgpCpACwB/uDYGxzDlyUSiSfDzEdERMRF
fX39U0AjsDZAs2pr7Q/T6fS1y5cvrw4ptYqnArA0XAXs6hD3emdn54VhJyMiIuIqHo+v6+7uPsQY
81jApl/da6+97n3uuecmh5JYhVMBOMalUqnDgIUuscaYLzc1NW0ONyMREZFgGhsbN02YMOET1tqf
BmlnjDl6y5Ytj/k3QcoIUgE4hrW1tU0wxrTiTZg5KGvtXbFY7L5RSEtERCSwWbNmdcfj8VOASwh2
h3AMeDqdTh8YTmaVSQXgGDZlypRvAzMdQjeNGzfurLDzERERKYYxxsbj8W8ZY74EdAdougfweDqd
/kRIqVUcFYBj1MqVKw8CznOJtdaeO2fOnCB3WYmIiEQmFovdZoz5J+CdAM3qgPtSqdSCkNKqKCoA
x6Dly5dXV1VV3QLUOIT/OpFI3B52TiIiIiMpFos9UlVV1QSsD9Cs1hhzSzqdvsxfGlWGSQXgGDRj
xowleGMehvJBb2/v4rDzERERCUN9ff0LPT09HwVWBmx6UXt7+x1tbW0TwsirEqgAHGPS6fQMa+13
XGKttd88+OCDg3xyEhERGVMaGhre7O7uPgy4N0g7a+3np0yZ8pt0Or1TOJmVNxWAY4h/OrsVmDhU
rDEmtX79+mvDz0pERCRcjY2NHbFY7ARjzA8DNm0CVqxatcrlhskw7BHR6xZNBeAYkk6nTwM+7hC6
BVjY3NzcG3JKIiIio8IYk43FYkuMMV8Bgvx9m9nb2/tUOp1uCiu3QaSBK4DtInjtoqgAHCNqampq
jDFXO4ZfEYvFVoeakIiISARisdgNwDHA+wGafQh4qHpi9aRwshrQeOACYDPwJUqoriqZRMvdtGnT
dgV2cAhdW1dXd2nY+YiIiEQlHo/fb639B+BPAZqNH1c3brTHA07N+f5HwDNAwyjnMCwqAMeISZMm
1TmEWeD0mTNndoWdj4iISJQSicSqnp6eg4Hno85lEO/mPY8DK4A7GOPjA1UAlpZl8Xj8iaiTEBER
GQ0NDQ2vd3Z2HgI8GHUuARjgC8Aa4Bs43NgZBRWApeP1np6eC6NOQkREZDQ1NTVt3rx581HAzcNp
b2pN7Qin5Go74FJgLXBiRDkMSAVgibDWntnQ0PBe1HmIiIiMtvnz5/fE4/FFwIV4w6GcTd598j6Z
TGa/cDJzsgewHGgD5kaYxzZUAJYAa+1diUTiP6POQ0RKwlF445ByH7dFmZDISInH41cAnwM6XdvY
XttjrQ1yM0lYDsObNiYJRD55tctaszIKXn75ZS677LJ+23t6eroefvjhbrwfGCllHezYbyTIX9gH
/d9G7oj72fGhT/ffnnyRzwJ7jXpCRSm75VHHDbD9Y+h3pyLF43F23XXXB2Ox2Cdra2u3WQpuv/f2
o5Ztr/hufG1jZzwevzKkdIKO76sCFgHNeJeHrwO6RzopF2XXU5SQ+4ACf3KkbJ0L5N/r/Qfg1ghy
kW0cuCOsPqH/9otWwvefHf18RGR4zuVc6vI62jd5k5u4KaKMhvQu8HngV6P9wroEHB2N5xMREals
dcADwJ1A9Wi+sArA6HwVWBV1EiIiIhKpVryaYFSXd9UYwP62A/4RmA8cCMzAq9DHAZuAvwAvAw/h
zUv0+2G+ztvAkXiXgvctLmUpCYY68j90VdGDt4SQRKjaUM22M/oDUFNFBwEGm0soDLB9ge1dwN9G
ORcZw8aPHz+xakvVBLLbbjeYXsK76rY9wx9O9yiwhIhOBqkA3Gpf4Hzgi8CEAWJ29h+z8NYpBPgl
8E2GN1P528BHh9FOStFUXiV/Zvi/52ng0Ejykf+16ngOBPqtr31JnO9e2s73I0hJtqoD/lpg+63A
GaOci4xhXV1d1I2vezPblZ2Wu30a014AZof0sn+l/+juofwBOA+4e+TTcadLwDAJuBpvxu4FDFz8
DeQY4Fng7CLz6Hf2QURERNxlu7Jj+Yz9+8DFwEeIuPgDFYAz8Obk+RrFDb6sAq4Brhpm+x2Ax/CK
URERESkfFu8mj/2B7wEd0abjqeQCMAasBEZydvDz8G7nDuqHwEHA0hHMRURERKKVAhqBk4DXIs5l
G5U6BnAW3g0cO4Zw7CTwOPBHx/j9gZP9788CrscbHyDlpoqjyJ/U1vB+NMnINibzMpuJ99s+zvn3
WMLzPtAA3AXs6W9bCvw4qoRk7Kqiql8/myUbxRm3jXiXe2+D/NtSBrUz3njkvnGMFm+MoW4WHAF1
wDq8f9SwHlcEyOdBvB8O639dXsybExEpQ2eztX/tBd4EpkSakYgn/+9/F/B9vBlFgjJ4E0LnHu+l
kUlTAO7BrYhbh3dmbhowHqjHK9Zc2m7CbTzfZwZor7tCRUQ8f4e3WkLfB+W+x+VRJiXi62Hrz+Qv
gH2KONYS+tcDdxaboHiOx62Ae4rCd+WOwzs163KMoZZ5G483n2BvXrtevLuKR3VGcBGRMeom+vev
WbwzLXtHmJcIeNPArAEOL/I4c/F+pvN/1i8o8riCt2Dza7idvZs+yHEWOhzD4i3yPJjzh2i/MOD7
ExEpNwfR/0NybhF4b3SpiQBwKsXfTzEZWEvhn/Mjijy2UPjUaqHH+UMcZz/H4zw0yDF2wRvQmX9J
I/cs4F8oPPu9iEilaGPgfrLvUeyZF5EojMe7Ungz3phWl7ri7UgyLXETgDcY+h/3A4ae0Xs7h+NY
4MVBjvEjx2NcHehdioiUjxMZuo/sxbv8VqkzWkjp2oBbHZD7eCqKREvdybj94/7U4VhVjsd6Y4D2
cYb+RNv32II3Y7iISCWZALzKwJd/8x9nRpOmyLBMIXjxZ4Hbo0i21D2O2z/upxyONdHxWF0F2hrg
Sdw7tSxwX8D3KiJS6r6J+x/FXryx2x+KJFOR4nyagX+2/y3CvMrC7rh1Ih/gtg7wLo7H6y7Q9iTH
tsMpTEVEysFuDK+f1B9LKUVfZ+Cf6fMizKss5E4gOtjjvx2PN9vxeO/mtZuEt8LHcDq2F4HaIG9a
RKRE/TvD6yctcEAE+YoU42cM/PP8yTBfuBIGzrqePXvCMW4Px7j8Jb4mAV8qEDcNr8Prcyze2ch8
k/HmGxIRKVdVwK0UXuatFdjL//5y4JECMZ0h5SUSltmD7PvtqGVRhmrwpltx+eT4McdjfsXxeBnH
4+2R126ou5BFRCpR7iT8J0Wci8hIGM+2K4nkPjaF/eJVYb9AxObivh7fs45x+zrG/ckxTkRERCrP
LAZe9ev5sF+83AvAgxzjNtB/zN5AXKdl+b1jnIiIiFSeSC//lnsB6DogeE0Ix9S1exERERnIYAWg
zgAWaYZj3FrHuJ3wpoFx4XpJWURERCqPCsAQ7eYY97Jj3BzHuM3Ac46xIiIiUnkOHGSfLgEXyfVs
3QbHuI86xj2BNzu9iIiISL5d8KaBK+Q13O9LGLZyLwBd7wB+3THOtQC83zFOREREKk+kl3+h/AtA
l6XdAN5yiBkH/INDnAXudXxdERERqTyRTwBd7gVg1jHO5VTrobidUXwMzQEoIiIiAxtsRhGdARwB
rkundTvEfM7xWEnHOBEREalMg80pHGRqumFTAeiZOMT+ScAJDsf5E/CLvG0/x7ss3EVlrL0sIhKU
+kmpNHsPsu+V0Uig3H/RXgc+7BC3J/DCIPsXAjs4HOdy+p9NvAA4DngJb82/fO/jLXLex+VspIhI
ORmqnwS4B3jK/9516i6RsWrHQfZ1jloWZewyCi+ynP9oGeQYuwJvOxxjA97CzvmO9fffWeybEREp
U+onpdL8lYHriXmjkUC5XwJ+2jHubArfMbw98B8MXqn3+Sre5Yt8fXf6aGk4EZHC1E9KpWkfZF8r
EMObfWQGcDpwxGgkVU62w7vD1+Us4CNAAu8s3k7APwPrHdveNUgOd/sxx+KNNew7m/jLnBgDnAX8
DtgCvAgc5e97yI9/LSf+LuAD938GEZExTf2kVJoTcasv+h5PFT6MDOYagv0jB32sA+oGef2X/LiZ
eJeTVwFfyYv5Md6UNafijUe0wKac/e/grSxS6z+fCjzp+P5FRMY69ZNSia7Grc5IA5+NKMeS9n/w
PgWGUfy9zeBz+UzE65D+BuyPN05wcV7MCWw79qXRf/5STkza3zbDf/5F4BMO711EZKxTPymV7DDg
Z8CrQAfe2e0/Ar8BvgXMiSyzMrGIkS/+NuFdMh5MPCf2Lf/7i/JiHvW3fwGvw3oDr7A8JCfmLj/m
cGAP4Gbndy4iMrapnxSRULUycsXfi3iXKoZyGluv3Z/hf/9EXsxmf/u7ftzFwIfyYvruZv4y0IZ3
VlNEpByonxSR0H2T4gq/HuAHwGTH1/uh324J3g0pXf4xcu8q7vRjBpuTcQFbLzl/y/G1RURKgfpJ
ERkVCeBBghV+HcAtwL4BX6vvzrQj8p6flBPziL/tNLxbvucDP8k7zmF+zDoKT1cjIlKq1E+KyKja
HzgH+E+8VUDexFuF4wO8Jd0eB27AG3y83TBf4028Dmma//xc//lm4O/8bTPwOrdOvDEwrcDOecfZ
3W/3mWHmISIyVqmfFBEZwDHAA1EnISIyhqmfFJGyMhlYC+wXdSIiImOU+kkRKQs1eJem6/CWovvX
aNMRERlz1E+KSNmZwdaxLurURET6Uz8pIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiXq
H/GmTLDAqxHnIiJyL15/9IeoExmE+k0RKQufxuvI/ivqRESk4s3H64/G+hJu6jel7FRFnYCMujn+
19WRZiEiArP8r2sizWJo6jel7KgArDyz/a/qyEQkaqVSAKrfFKlALUAP3un/fwaewFt+6Flgfz/m
WqDXj5kHXAK8ydZxLQY4C/gdsAV4ETgq5zWagJR/3C4/zmXfUMcFOAJI+203AZv9PLVouogUq9i+
77Gctji2AWgEHsLrzzqBF/z4A/z96jdFZESswvvlvxvYGa8otHjFYJ8X/W2X4n2qXQr8t7/vx0AW
OBXY04/blNN2vb9tb+BA/3uXfUMddzFe53wtMAn4mB/TAVQ7v3sRkYEV0/e95e/fLmfbUG3OwPtQ
fovf7hA/pguo8WPUb4pI0WrwPkW+w9ZL5hPwOoTunOc9wHvA9v62I4HvAif4sXf62xv95y/lvMYb
/rYTCrz+QPuGOu5heJ3YQ3ifeGFrR9Y+2BsWEXFUTN83zX++Ied4Q7WZj1e8PcrW/vgoP+bZnOOo
3xSRou2P98v/eM627dj2U2PMf76iQPtH/X1fAL6I1zG9jfeptc9FbC0o8y9FDLRvqOPe7+//eE6b
c/xttw3wXkVEgiim7+u7A/j+AG0e8PcfntOmr4/8twLb1G+KyLB9Hu+X/8acbYf6237lPz/Vf95a
oH3f2JF3gaeAi4EP5cXUAT/z437nuG+o477t75+Ss+12f9uSAnmKiAR1KsPv+870918ZoM079O/X
7vC3fS1nm/pNESna9/B++c/I2dbXIXzWf/4D//lZBdp3+vtqCuzD3zeBrZdDuh33DXXcbn//+Jxt
a/xtRwzQRkQkiGL6vhv9/f8SoE1fvzYhZ1tfv3ak/1z9pogDTQMztL7b/1/G6xSWACfjFYH35sX8
tkD7vksjJwPj8C57/CQv5kjgw/73qxz3DXXc5/yvn8O7ceU6tt61rKkMRGQkFNP39fVHLwRo0zcO
bwHeWb5rKNyvqd8UkaK9ijfo+AO8wcEb8MaX5N4N9ibeJ8RpBdrPAB7B++S5Ce9Syc45+3+JJ0v/
WgAAALVJREFUdzmiC/gf4COO+4Y67lzgeb9tG3CQ/70F7hn6bYuIDKmYvu8t+l+iHarNHLxCbAve
NC2fZus0XQ/6Meo3RaRodWj9RxERESkzugQ8uAP9ry9HmoWIiIjICFIBOLi+AvDFSLMQERERkVFx
AvA3ts4w/9No0xERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER
ERERERERERERERGRiPx/4UAONQMQcb0AAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Another property used to characterize timbre is the existence of partials and their relative strengths. <strong>Partials</strong> are the dominant frequencies in a musical tone with the lowest partial being the <strong>fundamental frequency</strong>.</p>
<p>The partials of a sound are visualized with a <strong>spectrogram</strong>. A spectrogram shows the intensity of frequency components over time.</p>
</div>
</div>
......@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {
"collapsed": true,
"slideshow": {
......@@ -11,7 +11,7 @@
},
"outputs": [],
"source": [
"import numpy, scipy, matplotlib.pyplot as plt, pandas, librosa"
"import numpy, scipy, matplotlib.pyplot as plt, pandas, librosa, IPython.display as ipd, urllib"
]
},
{
......@@ -36,6 +36,25 @@
"# Audio Representation"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"In performance, musicians convert sheet music representations into **sound** which is transmitted through the air as air pressure oscillations. In essence, sound is simply air vibrating ([Wikipedia](https://en.wikipedia.org/wiki/Sound)). Sound vibrates through the air as **longitudinal waves**, i.e. the oscillations are parallel to the direction of propagation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Audio** refers to the production, transmission, or reception of sounds that are audible by humans. An **audio signal** is a representation of sound that represents the fluctuation in air pressure caused by the vibration as a function of time. Unlike sheet music or symbolic representations, audio representations encode everything that is necessary to reproduce an acoustic realization of a piece of music. However, note parameters such as onsets, durations, and pitches are not encoded explicitly. This makes converting from an audio representation to a\n",
"symbolic representation a difficult and ill-defined task."
]
},
{
"cell_type": "markdown",
"metadata": {
......@@ -44,7 +63,7 @@
}
},
"source": [
"## Time Domain"
"## Waveforms and the Time Domain"
]
},
{
......@@ -55,9 +74,7 @@
}
},
"source": [
"The basic representation of an audio signal is in the *time domain*. \n",
"\n",
"[Sound is air vibrating](https://en.wikipedia.org/wiki/Sound). An audio signal represents the fluctuation in air pressure caused by the vibration as a function of time."
"The basic representation of an audio signal is in the **time domain**. "
]
},
{
......@@ -73,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"metadata": {
"collapsed": false,
"slideshow": {
......@@ -95,19 +112,22 @@
"<IPython.lib.display.Audio object>"
]
},
"execution_count": 2,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import urllib\n",
"urllib.urlretrieve('http://audio.musicinformationretrieval.com/c_strum.wav')\n",
"\n",
"x, fs = librosa.load('c_strum.wav', sr=44100)\n",
"\n",
"from IPython.display import Audio\n",
"Audio(x, rate=fs)"
"ipd.Audio(x, rate=fs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The change in air pressure at a certain time is graphically represented by a **pressure-time plot**, or simply **waveform**."
]
},
{
......@@ -118,7 +138,7 @@
}
},
"source": [
"To plot a signal in the time domain, use [`librosa.display.waveplot`](http://bmcfee.github.io/librosa/generated/librosa.display.waveplot.html):"
"To plot a waveform, use [`librosa.display.waveplot`](http://bmcfee.github.io/librosa/generated/librosa.display.waveplot.html):"
]
},
{
......@@ -210,7 +230,86 @@
}
},
"source": [
"Digital computers can only capture this data at discrete moments in time. The rate at which a computer captures audio data is called the *sampling frequency* (abbreviated `fs`) or *sample rate* (abbreviated `sr`). For this workshop, we will mostly work with a sampling frequency of 44100 Hz."
"Digital computers can only capture this data at discrete moments in time. The rate at which a computer captures audio data is called the **sampling frequency** (often abbreviated `fs`) or **sampling rate** (often abbreviated `sr`). For this workshop, we will mostly work with a sampling frequency of 44100 Hz, the sampling rate of CD recordings."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Frequency and Pitch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dynamics, Intensity, and Loudness"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Timbre"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Timbre** is the quality of sound that distinguishes the tone of different instruments and voices even if the sounds have the same pitch and loudness."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One characteristic of timbre is its temporal evolution. The **envelope** of a signal is a smooth curve that approximates the amplitude extremes of a waveform over time.\n",
"\n",
"Envelopes are often modeled by the **ADSR model** ([Wikipedia](https://en.wikipedia.org/wiki/Synthesizer#Attack_Decay_Sustain_Release_.28ADSR.29_envelope)) which describes four phases of a sound: attack, decay, sustain, release. \n",
"\n",
"During the attack phase, the sound builds up, usually with noise-like components over a broad frequency range. Such a noise-like short-duration sound at the start of a sound is often called a transient.\n",
"\n",
"During the decay phase, the sound stabilizes and reaches a steady periodic pattern.\n",
"\n",
"During the sustain phase, the energy remains fairly constant.\n",
"\n",
"During the release phase, the sound fades away.\n",
"\n",
"The ADSR model is a simplification and does not necessarily model the amplitude envelopes of all sounds."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFdCAYAAACThdxPAAAABmJLR0QA/wD/AP+gvaeTAAAAB3RJ\nTUUH2ggSCjoUh/XO7gAAIABJREFUeJzs3Xl8VNX5+PHPuZMEIiDu+4rFWlNFMjcBKa3SWqvV1q60\ntZtWkgmg1q11RcZ9X75WJRO02sVvW+z3Zzdba1uxlSIwd4KAVCt1qXXXCgoYSDL3+f1xJ3EyGZI7\nk7mZzMzzfr14wZw598xzyZ3JM+eeBZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSiml\nlFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRS\nqiKYYgegKlCUm4Bz+pQZLmI+1xQnIKWUUqqyVBU7AFVhouwHzO1XLoSHPxg1EGmmHZic5+FbgHd6\n/xieQXAAB2g3bbxXoDCVKhtRogmgPo9Du4CNqT//AVbhvdd+EyX6duEiVOVEewDV8IpyL/DtLM/8\nmygHDG8waiAS4TRcJgGHYPggsC+F+czoAP6AodXE+FMB2lOqLFzGZU2CHAZ8EDiEob/nuoDfAhdG\niT5TgBBVGdEEUA2fKB/G+2Zq4fUMje/zfA27cBH/LUJkygdpZiVwREbxXqaNV3vrRLF4hXF4P9td\nEA7HMBk4Bji0f6OswHCmaWN5gKErVZKiROOAnV5mYR1+KZeuSatTBWxvYe3r4oaBmcCx9P393gWc\nEyV6+zCErUqEJoBq+ET5LXAi8C6GCxDuzKjxKaI8XITI1CAkShWvsAkYlVb8X9PGLr7baKIBw1zg\nW/T97EkCl5o2ri5MtEqVvihRC++W7nZpxV17sueYCJGugY69nMs/6uL+DNg7vdxgTp/P/DsKH60q\nRVaxA1AVIsp0vOQP4CaEv2SpZWcpUyPBS0ykb/IH8GQuTZiFxE0bpyDMAJ5LeyoEXCXN/GCIUSpV\nNkKEDqJv8gfwz8GSP4BLufQxvF73jvRyQa6PEt2vcFGqUqYJoBou16X+fotabgH+BWzOqKMTQUYq\nw2FZStdkKRu8qYX8FYuPAS9kPHW6NHN2Pm0qVW6SJIf0nosSfRrIvOW7HdA0lLhU+dAEUAXvMk4C\npgFguJrz2UgUl/4fZtoDOHJl+2WUUw9gOtPKy3g9FJmzga+R2Xww33aVKhcGU4j33P/LUnZCHuGo\nMqQJoArWIkJI79iu/7Bjn3F/qzJq70fU/5gyNaz6/zKS/HoAe5g2ngVuyigeRZLLhtKuUuVAkMMz\nywwm1/dctpm/++cXkSo3mgCqYP2Db/P+7M/LOZOtvc+ZfgkgGL0NPCJluwU8Ov8ewF5VXI83Izzd\nl2QOewy5baVKW7/3nCC5JoCbspSNzS8cVW40AVTBiTIaiKYePQPc2+d5wxNZjtLbwCOMzGEscGBG\n8YvmB7w71LbNnWxC+q0FGKKLLwy1baVK1c3cXAsclFG8cT7z/51LO1VU7ZqlWBeGVoAmgCpIhjPw\nFjIFmEeU7j7Pu6wBpE+Z7ggy8nRTR/8lo4Z0+7cPi4f6lRk+VrD2lSox7/JuHf1/Pz9pMJKt/ra4\nuB/IUvxCvnGp8qIJoApGlB0QLkw9Wsl87s9SZxPwbEap9gCOPNnG/w399m+PZNae4P6LRitVIQo0\nAQQXN9uEj7/mHpEqR5oAqqBcAOwIgOFiDNv65pr5y39fribbbQtVPAVbAiYr4a0spftmKVOqIhRi\nAsh1XDcOb9H1Piys+4YQmiojmgAWX3WxAyi4KHsBZ6YePcZ8/jBA7f4TQTr1NvAI0z8BtArYAxji\nzSylYwrWvlKlZ8gTQDrouBzYPaP4V+nbyKnKpglgcVUBf6D8ftldBtSm/n3RgDWzzQTW28AjTeYv\no27e5qmCtb4XnVlKcxrrpFSZ6ZcA1lCTyyLQ5wFnZRS/CkSGGJcqI1XFDqDCzQE+AZwPXFrkWAoj\nyiHAqalHvyfKkgHrh3giY2oI6I4gI4bMYQ+6+63NuM7cnzVpy8+L1Gb5JMrcJUapihAluhuwW0bx\nqxdx0X8HO/YKrjgwSfIW4KSMp14METp2HvPeKFScqvRpAlg8uwD/k/r3POCHlMfsrKvx9nYV4OJB\na1/Cf4iynp7xgh7tARwpkllu/5oCjv8DGM0OWb4E6FIVqiIZzGHSvwO835CLKNHtgB0srP0FaRTk\n+CTJT9L/zt7Pa6g58yIuyjbUQlUwTQCL5/KMx9cDM4sRSMFczhRcPp96tIho1tmd2awCjk57vA9R\ndiOKflstNqHfYHQKOQEEwGXPLKXPF/Q1lCod2d5zn4wSzToswsXNVvwe8GsL65ZLuTReyOBU+dAE\nsDgOB5ozyr6MlwQ9OtzBFIzLdal/dRNiXg5HPkHfBLBnR5CBJo+o4RHsEjAALtnWKvtnQV9DqRIh\nSLZZ97m4anu2v+oczukoSECqbGkCWBy34t0mzXQL3u3P5PCGUwBRPg0clXp0L/NYl8PR25oIoglg\n8QW7BMy2XkN4vMCvoVSp6Pd+sLDqL+XSlZnlUaLXA9/LKJ6syZ/yQxPA4fdFYMY2njsCmAXEhi+c\nAohiAdeklcwiyqwhtak7ghSdfJkQ/Rdkfo82nivsC/HRjH1GBNHFalXliRK16P+eS7q4WWfdhwgt\nSJI8l77j/o6/gisOmse8zEX2lepDl4EZXqOBGwapcwWwwzDEUjiGr5N93MpQ6ESQYtuFD+Bds+nW\nmgIu0SJnsD2Gxj6FhuXmLl4q1GsoVSpChA4CtssoXhcluiVb/XnMe57+d0pMkuTcIOJT5UV7AIfX\nucCBg9TZFYjSfw2nkSlKDdI7oWUTNUzgoqwL+w7WzpNAXVrJ3lzF7lzM64UIU+XBzXr7t7Dj/7bw\nJUzGYujCjwv6GkqVCBc350lXBnOHIJlbvp16AzfM+x7f0+WU1DZpD+Dw2RtvezQ/5gCHBBhLIc0B\nDkj9++a8kj9P/3GAXXobuMiGY/xf5sK0/wV+VODXUKokZJsAMtgWcJdy6UP031N9h/d47xuFjE2V\nH+0BHD7XAGN91q3GmyhyXHDhFMB1jKOjd62//wI35d2W4QmEkzNKbeD3ebc50lzGCfS/vfMW81lc\njHB8yDY5o2AJoET4JJJx+xeuMm28V6jX8B1LM+OBY7M8tca08fRwx6P6qAY+l6X8WaB9mGMJWs5b\nwBmMRIneScbnryBzKbXx5AVwGZf1+5wV5J0o0YeLFNKIpQng8JgK5Ppt7FPACcCDhQ+nQDr4PqR2\niTBcw3zezbstyToTuLx6AIU7gf0ySpcAHy1CNIOTLAlgdWFuAUsz1UjvQug9/gHcXoj287AfsChL\n+YXAtcMci+prO7L/bBbg3YEoJ/3ecyFCg37pGsWoe7ay9Ure34IT4LDLufyoS7m0oiZUCZLtc3YN\nhR+nXvL0FnDwDN6OH2awilncAhnjo0aKq9gdODv16GWEO4bYYrZFo3UiSJFIM9sBEzKK3zJ38lph\nXoCbgA+llWzFcLJpo6sg7StVYm7m5lrgoIzizZdwyaCz7i/kwvXA/2aWu7hnFCg8VYY0AQzet6Df\nbS6/JgJnFjCWwuliPjAm9ehyomSdpeabt+vHqxmlexFljyG1q/Ij1JH5+VCgBaCliTkY0n8xCUKT\niWXtBVaqImxi04fp/zt5rcH4mnVvYWX7En5SlOg+Qw5OlSVNAIM1lr7r4+XjUvpvDF5cUT4Avev8\n/QtvH+NC6J8AmGG5DVwDWXejqGSBTACRCOdj+tzmFeAss5Cf+Dh88lBfX6mRysUd0nsutVB05gLq\nVUDLUOIKgL6PRwhNAIN1MWTd5zQX2wNXFSCWQrqK929NzyNKd4HaLdZt4FpgLd4ajX4n6pQ3kyUB\ntPLvAZRZ7CPN/BrhWt4fDrEFw9dNG7f5bOZHwO/QZF2Vp5xnAGeRbQxt023cNiq/kALhAG30jB9X\nRaMJYHAOxP+yL4OZxUiZEHE5Ybx9iwGeYD6/KGDr/XsAh29HkBrgPOBt4Dvoe6MgPYDSwgHSxE1Y\nPA18Nu2pJxBsE+NnOTZ5ArAOuJFSWzBdqYHlPAM4i18Cb2SU7bae9TPzjqrwLKAJeBNvbdya4oZT\nuSr9l1yQbi5we7eQ30SSwnLTenAMl2AKtysEI2MiSDVwN7ACb/Z2peqfABosmc0EmcXucgbbyxmM\nEm8bQOTL1Mgp7CARDpUIn5EmrpBmluLyHIZzeH+86KsYIqzHNgtZm2NM6ftnnws8jSbrqnwMeeH1\nKNFOYGFmuSCn5xtUwG7E++I/spc8K1O6DEwwJuNNOX8ebzr6v7PU2YO+axV1Qtbtr/YFXsZbSPoY\n4E8FjdSPy/g2wrHAdNKn1wt3E6UdSAD3Ec1jvbTLOB7hE8Ck1J9MexLlJbyEbAVwO1E25X4SOQsD\nS4Gf4/XkvjgMr1kU0sxhCCdicTDCB4GDgZ37VXRZAnjp1tZU2SsgzemNpf7u+1WlG3gMuAu438Ty\nnumb+WVjd7xk/XTgu6nXUGrEu47rxm1hyymCHIq39++hZL8l+lSU6DPAMwbzjCAPRolm+6Lcq4qq\nWDfdF9D3C1NjlOhrwGpgtcH8aT7z/1ig0xmqQ/C2s3sIbwesfxY3nMqhCWAwVtJ/On+m3+Hdzurx\nT0biOkXeVm8Lyb4cze7A8ak/yyGPBNBbPmaw7fH2Bj4PfJrC96wOxABfw7t1eU3qtTuG8fWHy5kY\nZhWoL7cL7wvL88ATGJbTzZ/M3bxdgLbdbZRPBv5KBSTrqjx00PER8DX2dSe8OxFTxXuDvk72OyW9\nLuGS/0SJ/gbvMzPd7sAngU8KUg2MlASwx3F4CeoPgCuBDcUNp/xpAqgGFqWTIMdoRPutNTcSjcH7\nQGoGvkf2RWlLlmmjCW9MTi8Bw5ex2BGLTkJYVOMSYgwh3sMihEVNWj+foYsuOmijw/TvqRsOPcn6\n54DrgOspz2RdlYEo0YcIcEhPlOgXgmo7YDV4wzu+DVyE18O/rS9+aog0AVTKv/2AXwCzgXPwenrL\nkgHhfpJAEq9Xb2jrPA6fWiCKNzbwArxewWIkpEqp/O2CN1O457P20aJGU6Z08LRSuTsabymDGLqU\nwUi1H97OCH9F1x1TqlRNBhbjfZHL3N5NDZEmgErlx8K7JbwOXcpgJPsoXrJ+N94YKKVU6fkK3hjz\nK+k7eVINgd4CHmluYxSb9QIfVn9iex7J++gd8JYymIW3N/JD+TYkX6aGXXqXS1EZqlsJded3M9fC\nuyX8BbxfID/Am3WvykSU6NhRjBqZ+6arPi7kwnwPrcXbXOGb6PCOgtAEcKRZz3cQ7ix2GBWlEYaQ\nAPYY+lIGO/Ilktw35EjK1Id2hDVDm0vck6y34C0b8/sChKVGhp9vZesJg1dTZaBneMeZwFygvbjh\nlC69BaxUYR2Hd6tCd6oYuT4APIiXsB9a5FiUUvmZircG7d0MfcvViqQJoFLBOBevF/CDxQ5EbdNx\neLsQfK3YgSil8vYd4BmgodiBlBpNAJUKxqN4CYauaj9yvQh8C28skVKqNK0EPgPEix1IqdExgEoV\n1ouU4WLRZaYDXSxaqVL3FrpY9JBoAjjSCL/FW1pEDZf1jAF+NcRWNjPU7eKqeIQuPjnEOMrWvzfR\nxuDbBg5E0O3iytUlwK3FDkL5MtT97DvR7eIKQhPAkSbKS8BLxQ6jwowfwrEFSyrMnbwGvDaUNsrc\npiEcuxJv5u9jBYpFjSBRogPuj6vKRv6rLKh+hjUBjMVi1XgzJA8EXBH5Q0tLy2eGMwalCigBnA4s\nK3Ygaptew1s77F70NpFSpeopvC3h8l5nVfU33JNAZgET8DbBDhljpg7z6ytVCK8Cp+GtIKjJ38jU\nCdwEfAj4IZr8KVWKNgDnAUegyV/BDVsCePPNN9fijdNIt8udd945YbhiUGqIOoEbgIPRpGIk+x1Q\nh/eLQ8cIKVV6XLy91ififZHTnXsCMGwJ4JgxY04H9gJ+2icAy5oyXDEoNQQP4CUV32doY9FUcP4B\nHI+3JMS/ihyLUio/jwI23o49bxU3lPI2LAngbbfdtj1wvoj80XXdH6Q/Z4xpHI4YlMrTP4BP4e0j\nq0nFyLQBb2D4JPQ2kVKl6kXgy8AMvElbKmDDMgmkpqbmXGBn4JKOjo61Y8aMSQKh1NP9EsBYLLYf\nsBzYI634N5FI5KTW1tZPAhekEkeDt95aJBKJdLW2tn7aGHM+3orgHcANkUjkWgARMW1tbXGgPnUc\nADvuuGPV+vXrz8Vbuy0E3N7c3DzfGKObTFe2t4F5QBvQXeRYlKc643E33s9nPtpToFSp2gRcy1CW\n0FJ5CbwHMBaL7WKMOdsY8+uWlhbnnHPO6cCbCdxjcjQa7ZOIRiKRF13XPSmjqa5YLHaxMeZhY8zH\ngbHAGOBUETmttbX1MmPMg8DHgFpgJ+CahQsXhgGMMRKJRGzghbQ2Ozds2HAV3qKwuwA7AvNisVik\nYP8BqhTdibeF251o8jeSdKX9+1G820Rz0eRPqVL1M7z9uK9Ck79hF3gCaIy5EBhrjLk0rTi9e7d2\nzz33PDzzuFAo9OGMoo8Bn3Bdd3fgnszXMMZ8FG+M4Q/Tn3NdN9zz7x//+MdjgAPSnq52XXcT0JTR\n3qzBzkuVpcV44/w0qRi5nse7HT8Dbx9fpVTpiQNHAicD/ylyLBUr0ARwwYIFe4vIHBG5v6mpaXVP\nuYj0ub8vItnGAdZlPHaTyeQXZ8+e/Qbexs/pQsDnI5HIq2TsoiEivb/It2zZcihpt3+B53baaadr\nLMv6bUZ7hw54YqrcdOIlFR/HG/OnRqbr8D4XHih2IEqpvJ0GTEWX0Cq6QMcAWpZ1KVBjjJmfXm6M\nWZnxuBFoTS8TkcwewJvnzJmzPvXviRl1b25paXkn23OhUOiptId9kkpjzKMzZ85MRqPRN/fcc88+\noW/7rDwLFy6cKiKfSz18urm5+V6Ae+65Z4eurq4LeupVV1dHTz311C0AsVjsLGPMHgA33njj9s88\n4+WxdXV1HH744XvMmDHjWuCJ5ubmnwMsWLDggFAo1JI6xy2RSCTa024sFosaY0YDJJPJ1tmzZ78A\n0NbW9lW8NZNwXffRlpaWh1LlRwBfTbX1WiQSuTUV7+iurq7edqurq6899dRTNwC0tra2WJZ1QOr/\n6ldNTU3LUnEdHQqFjhvs3Jubm3v/nX7uInJvJBJ5OvUax1mWdXSqfFkkEvlVlnPf0DOWM/Pcu7q6\nbp07d+5rmeeeTCYfmj179qOZ5+667gstLS2t2zj3P/T8rHI99zvuuGOP6urqs7Zx7hcYY3Y4+7Wz\nd9jsbibdrqFdD7iq7apr0889FosdYow5Jdu5t7W19f4749xPAQ7JPPf06zTj3H1dp8DPm5ubn8hy\n7r3Xafq5Z7lOLzDG7JCKq/c6jcVin+tZBzT9Os04997rNHWOhwGHpeLtvU7Tzz39Z+X3PZr+s9qW\n9OuUEn6PDnKdjsj36BtvvBE9//zz+/1MJkyYUHfBBRf0vGZO12mWc++9TtPPPf06LYX3aJ7XaSHf\no73nPsh71M08dwr0u+S1s1/bwd3cd4Uua7y1R9sNbdcG/B49pOfnUCoCSwBjsdhBwHfwkqmnYrHY\nQNWzLQXTJwE0xixOezgpo+5ftvHc1pdffrm3RzBLUrkG4NBDD61av359evmbAwUL4LruZKDnU+lB\nvJ0G6Ozs3D6tnM7OzmuALamH3xGRwwD23XfflT0J4MEHH8zRRx+9q4icD/wv3tZiWJa1T6oM4B0g\nmhbCWSIyPlXvd6TGNorIZ/C61UlNZHkoVX5oWlxrSO2b2dnZOSoj3jtJrZ1mjPm6iExPHf9vUt/Y\nLMuamhbXNs8db3u0Hr3njrcd19Op1zgqra0FpPbkzTj3F/EGCfc796qqqvtIbZ+Wfu6WZW3AGyfW\n59yNMUtIfdnIcu69P6tcz72qqmrXtPLMc58tIvuNMqPYTN8EcHxofM959p47cNC2zj39NTLO/UvA\nCZnnnn6dZpy7r+sUWA08keXce6/TjHPPvE5ni8h+qeN7r1PgWBGZnYqr9zrNOPfe6zTz3NOv0/Rz\nT/9Z+X2P0vdnlVXGdVqy79FBrtMR+R4dNWrUWWSx8847TxSRj6Ue5nqdZp5773Wafu6kXaeUwHs0\nz+u01N6jA16nZpQh42MWa6zV87MP8j16KKmfQ6kIsgfwcrzbrR/qydDTxWKxF4D9Uw8Pufvuu8ed\ndtppG8HL/js7O/dKq56srq5eA5CaMJLek9e10047PbWN556KRqPpg/j79AC6rvskwH//+99dLev9\nTj8RKakfolJKKaVULgJJAGOx2GF43aQ/yZb8pazi/QTQ6u7utvEG4dPZ2ZnZU/dMT9f3Xnvt9UER\nGZ323NMzZ87szPacMWZ1Rjt92hWRNQChUOhDIu+v+mKMGXQtMWPMP0SkLfVwTU95KBTalEwme8rZ\nvHlzZ9oxvxSRxwFeffXV3mT0hRdeYMWKFW83Njb+UkRWpLX1Wk9bItJnhpSI3GuMqe2pl1b+iDFm\nU+r1ettyXfdflmW1pcpfTo9vzJgxvfGGQqH0RY5/Q2pMnDGmd2yciDxhjBn03DP+v3rPHe8bc0/5\nirT/xyXZzh1vSZas5+667ttp5b3nnp7Ep587aWv5ZZ57+s8q13N3XffttNfI9L/GmF2NZU4l2Xd4\nQXV1NTvvvPNmEdmYVvwi3vIm/c49rbzPueN9Q325J8aewozrtPfc/V6nruv2HpN+7unXafq5Z16n\neL0QO6Ve87W08iWkloJKv07Tzz39Os0894zrtPfc039Wft+jfqRfp6X8Hh3oOh2p71HXde8FTsmM\nd8OGDS8Av+05Ptu5b+s6zaL3Ok0/d9Ku0/RzZ4S+R/O5Timx9+hg16l0ysl4q4T0ct9z3wZ+GeR7\ntLa2tuTWiTWDV8ldLBb7NXC8ZVkfbGpqen4bdS7HW2etx4U94yhaW1tbjDELeoM05mfNzc0np447\nGbgv7bifRiKRb27jufMikchNqefG03dbqDcikcjuAG1tbVeISM82de+EQqEJs2bNynxTF9rvSHWJ\np6wB+s2GVuXBcZzLT/zLifNe63itT/kROx3BXdPu6nl4d3d39zlTp059d9gDrHDSzGF4t9IyXWja\n+tzaVMMv87O7xwJgzjDHoka4KNF/A/tlFK+JEtXfrxkKPgs4FotNAT4L3LWt5A/AGNNnCQdJmwls\njKnLeC79luwRA7TT5zkRWZ1WL7PNJwGi0aglIl9Lq3fRMCR/qoLE4/EP03c8y7acVlVV9WQ8Hv9k\n0DEppZSqbAVPAEXkamBLVVXVlQO+sGX1SQDTt4QzxmROAEmv22cCiOu623wuFAqlf6PPXFbm2UWL\nFtXsueeeVwAHpcpuam5uvnOguJXKxaJFi0LGmIVAjc9D9jXG/DGRSLQuWbJkXJCxKaWUqlwFSwBb\nW1s/E4vFXknt0jG6u7vbaWtruzBb3ba2tgeTyeSKjOK9Y7HYqwsWLPiIiGQu15LeAzhQkpeZHK6O\nxWKfg/4zgI0xTevXr98KnA0sEZHPRSKR8/ycq1J+HXTQQWfgrXmVCyMikdGjR69KJBIfDyIupZRS\nla1gk0BaWlp+S2pA7mCam5tPGKTKbtt6IhKJ7JHPc/TvAfz85s2b/5jamk6pglu5cuUByWTyiiE0\ncaCI/Dkej99ZU1Nz/qRJkzYPfohSSik1uEAXgh5h0nsABfh/Y8aMMW1tbZNF5HLgGGPMeSLygDHm\nRyIy3Rjz3ebm5oXpjbS1tU1L1Z+Ctzn9c0CV67pfmD179pOtra13GGPmAJ3V1dX7fOc733mzra3t\nUyLyEGkTT1T5SyaTrWTMRsuDMcbM7erqOq69vf079fX1fytEbEoppSpb4HsBjwS33377zkB64vUS\n7y/4+A0gAowSkRtFpCUUCp2SetznFnZbW9scEfmbMeaF7u7uPV3X/QTwIWD/119//WmAlpaWucDj\nQE1XV9epqUOrgXd7Vk9X5S8ej38T+FQBmzzIdd3F8Xj8Fsdxtitgu0oppSpQRSSANTU1meP/1gEH\nAFsty7qhu7t7I97/RSgUCt25ZcuWd1OPe9dmi8ViM0TkdmDJK6+80jx37txNoVBox9TTfRacNsbc\nlPpnc2tr6zkicrUxpqG5ufkPwZ2lGina29t3NcbcHEDTljHmLOCJFStWTAugfaWUUhWiIhJA+o//\nextvDcT2pqam16uqqnqeT2Q8Tt8f7vt4g/OviEajPRsNHgb9l7R55ZVXHsC7NXyQZVlf2bp16/Tm\n5uZnCnlCauRyXfdWYBc/dYW0Fcj9m2hZ1mOO49ywePHi0YNXV0oppfoq+wQwFov9SURuSS8TkS+k\n/u6ZAHJY6vGT6Y+B5WmHTQWorq5On73cc1yfBWT33nvvXUntRigiu+2xxx46eL9COI5zAqk9JP14\nasNTDvBwHi9lAeeNGzdupeM42fbSVkoppbap7CeBRCKRfovqxmKx/wHONMb8OlXU05PXJwEUkfQE\ncAyAZVldPQUiMin1d28C2NraOsl13Z8bY25OjSE8cP369V8A7i/cWamRKLVu34JBK6bpdDu3hsPh\n49rb25tE5EYg17X/DgGWOI5z0/jx4+dPnDhxa47HK6WUqkBl3wOYTc+agJZlPTnQ44wEsB2gs7Pz\ntFgsNr61tfVW4FB4fy3C1tbWTxpj/m5Z1tzU7OG7U+2cMywnpoqqtrb2amDfXI8zxkg4HG6zLOsw\n4JE8XroKOP+dd95JtLe323kcr5RSqsJUZAJojDkMoLu7+8mBHluW9UDPMSISwduv91bgL8aYPwFJ\nANd1f5w67j5gjIi8DVBVVXUPkDTGTI3FYrrDSBlbsWLFNBEZ0r6k9fX1/w6Hw8fg7W+az7CBOtd1\nH3cc54q1a9f63XlEKaVUBTLFDqCC/Q5IXxB7DaCbVZegdevWjXrnnXfaSfUIb8uJfzmR1zpeyyxe\nQpSPZhYuX778wKqqqntE5Kg8w1olIqc2NDSszPP4iiLNHAaszvLUhaaNa4c7HtXHeGBDlvIFeF+W\nlOoVJfp/dC/EAAAgAElEQVRvYL+M4jVRovr7NUNF9gAqVUgbNmy4kEGSPwBXXHewOj2mTJnyfH19\n/ceB7wLv5RHWJGPM8kQiMd9xnOo8jldKKVXGNAFUagji8fiHjTFZ97zOtLl7c7ZejG0yxri2bd8W\nCoWOAJbkEV61iESB5YlEQr/9KqWU6qUJoFJ5WrRoUcgYsxDwM97u0c3dmzfl8zqTJ09eFw6HjwLO\nBfLZu3qyiMQTicRFixcvLvuZ/0oppQanCaBSeZowYcJcUutDDmJLKBRqHsprpXoDbwbqgWV5NFEj\nIleNHTv28fb29kFvVyullCpvmgAqlYf29vb9gat8Vr9s8uTJ6wrxurZtP/3cc89NBy4AtuR6vDHG\ndl233XGc8xctWhQqRExKKaVKjyaASuUhmUy2AmN9VF25cePGGwv52jNnzkzatn2dZVlhY0w8jyZG\nAddOmDDh747jHFLI2JRSSpUGTQCVylEikfi6MeY4H1W7gVkzZszoDiKO+vr6f7z77rvTjDEXA515\nNDEFaHcc51wR0c8CpZSqIPqhr1QO2tvbdxWRW/3UFZFbbNtuDzKeGTNmdIfD4asBG8hnzb9a4MZE\nIvG3lStXTixsdEoppUYqTQCVyoHrurcCu/io+mxXV9f8oOPpYdv2GrwevflA1yDVs/lIMpl8wnGc\n72pvoFJKlT/9oFfKp3g8/mngZB9VxRjTPG3atHyWbMmbbdtdtm1f7rpuI7Aqjya2A25tb29/JB6P\nTyhweEoppUYQTQCV8mHt2rVjjTEL/NQ1xtwTDocfCTqmbWlsbHyitra2EbgSbxxiTkTkKGPMasdx\n5oiIbheplFJlSBNApXzo6Oi4mv77S2bzanV19XlBxzOYurq6Ttu251mWdSTwZB5NjAHuSCQSf165\ncuUBhY1OKaVUsWkCqNQg2tvbjwTm+qkrImccfvjh6wMOybf6+npn/PjxNnAtefQGAh9PJpOrE4lE\ns/YGKqVU+dAEUKkBrFu3bpTrugvx9175VUNDw/8FHVOuJk6cuNW27QuB6cBTeTQxTkRiiUTioRUr\nVuxb4PCUUkoVgSaASg1gw4YNFwJ1Pqq+Y1mWr17CYrFte/nGjRvrgRsBN48mjrUsa008Hj+twKEp\npZQaZpoAKrUNK1asqDPGXOinrjHm+/X19a8EHdNQzZgxY4tt29+zLGs6kM/2dOONMXclEonfP/HE\nE3sXOj6llFLDQxNApbIQEcsYsxCo8VH3b/X19QuHIayCqa+vf7yzs3NSalHrnHsDReT47u7uNY7j\nfDuA8JRSSgWsqtgBjHSxWGxPY8yFInIcsA9QG4lE+gyGb21tPckY8yvLso5sampaVpxIVSElEom5\nxpgjfVTdUlVVNcsYI4EHVWCpdQrPTiQS/09E7gEOyrGJHYF7E4nEF0SkxbbtVwsfpVJKqSBoD+AA\n7rjjjj2AuIicAUzE2zYrm38AJJPJrw5XbCo4juPsB1zts/plkydPzudW6ogRDocfq66unmSMuR3I\nOZEVkc8CTzqO42eRbKWUUiOAJoADCIVC84BBxzm99957LwEYYz4SeFAqcMaYVmCsj6pPbNy48cag\n4xkOkyZN2hwOh88APgE8n0cTOwH3xePx/1u2bNnuhY1OKaVUoWkCOABjzKf81Ntnn306U//8QIDh\nqGGQSCS+LiLH+6iaNMbMmjFjRj5r641Ytm0v3rJlyySglTx6A40xX6iqqnrScZwvFz46pZRShaIJ\n4MD2NcZc6brugTU1NbXNzc1Z/7/Wr1/f00s4bhhjUwXmOM4uqUkRftwSDocTgQZUJNOnT99o2/Zs\nEfkU8GIeTewCLHIcZ5HjOLsUODyllFIFoAngwKSrq+u62bNnv3DqqaduGWCg/6zU3+8OV2AqELfi\nJS+DeRaYH3AsRdfQ0PCn7u7uw4C7yaM3EPgysDaRSHyhsJEppZQaKp0FPLBXq6qqftTa2npjVVXV\nP7fffvtN69evR0RMW1tbrTHmQOCbIvK9VP18xk6pESCRSBwnIl/3UVUsy4rU19e/F3hQI8DUqVPf\nBWYlEolfishd+BgTm2E3Efk/x3F+1tnZefq0adPeDiBMpZRSOdIewAEYY/4GfMEYszSZTP53/fr1\nWwHa2tpcYLOIPCki5/P+/+NfihWryt/atWvHikirn7rGmHvq6+sr7uccDocfwtsR5Ud5NvG1mpqa\nJ+Px+GcLGJZSSqk8aQI4ABH5HyDps/pm4PYAw1EB6ejouArY30fV16qrq88LOp6Ryrbtd2zbPgU4\nEchnzb89jTG/dhznR6tXr96xsNEppZTKhSaAA4hEIu1AC9A1SNVNwFcikUg+A+ZVEbW3tx8JnO6z\n+pmHH374+iDjKQW2bT/Y2dn5YRH5aZ5NfKuzs3NNPB7/dEEDU0op5ZsmgIOIRCJ3WZY1yRjzA2A1\nsBGvV/AdIAFcD9RFIpEHiximysPatWtrXNddiL/3wa9t274/6JhKxbRp095uaGj4JvB54PU8mtjb\nGPOg4zh3OY4zvsDhKaWUGoROAvGhqanpKeDMYsehCmvLli0X4o1rG8w7VVVVc4OOpxTZtv0rx3GW\nGGN+ICL57IRzGnCs4zizbNt+uNDxKaWUyk57AAsoFovpVlglor29/VARudBPXRE5/4gjjng56JhK\nlW3bb4XD4a8BM4E38mhiX+CheDweW7Jkia6lqZRSw0ATwMK6pdgBqMGJiCUiC4FRPur+zbbttmEI\nq+TZtn1/dXX1YcaY/8vjcGOMaR49evSaRCLx8YIHp5RSqo+KvwUci8XyWeBWlTDHceYYY6b5qLrF\ndd2mARYAVxkmTZr0BvCleDz+VWPM7cDOOTaxv4j82XGc1urq6u9NmjRpcwBhKqVUxdMeQFVRHMfZ\nzxhzjc/ql0+ZMuWZQAMqUw0NDT/v7u6uM8b8Jo/DDTC7q6tr9YoVK44qdGxKKaU0AVSVZwEw1ke9\nVcCNAcdS1qZOnfp6OBw+yRjzTSCf5XMmWJb1iOM4/+M4znaFjk8ppSqZJoDZCbAV6MzxOJ3FOII5\njnMy4GftuaRlWbNs2x5s/UflQzgc/qllWR8G8lkqycKbgf+E4zjTCxuZUkpVroofAwi8GolE9sr2\nRCwW+6NlWd9rampaPVgjsVisWUQ2Fj48VQiO4+wC3Oqz+q319fVOkPFUmvr6+leAExOJxCkiciuQ\n69p/E4G/Oo5zS2dn57xp06Z1FD5KpZSqHNoDCKcM8FxdVVWVrzFg3d3dvzHGzClMSKrQjDE3A7v6\nqPoscGnA4VSscDh8r+u6h4nIQ3kcbgHn1tTUtCcSiamFjk0ppSpJxSeAkUhkoNu2u3R2dvr6P9pu\nu+02AEcUJipVSIlE4lMi8k0fVUVEWmzbfi/woCpYY2Pjf2zb/rQxphl4N48mDhGRJY7jXLt48eLR\nhY5PKaUqQcUngINw8bkDSGdn52lATbDhqFytXbt2rIjE/NQVkXsbGhr+HHRMCowxEg6HF1qWdbgx\nJp//8xBw/rhx4xLt7e12oeNTSqlyp2MAB/YycE1ra+tHjDE/TiaTiS1btrx69tlnb7n//vur33zz\nzd2rqqrCItKzC8JLRY5XZejo6LgK2N9H1de7urrOCzoe1Vd9ff2/ReTYRCLRAlwH5LoTyKGu6z4e\nj8ev32677S6rq6vLdeKWUkpVJO0BHEBPz4Qx5kRgUSgUenbMmDHvtbW1uevXr99aVVX1IvCAMWZm\n6pDHixas6ic1TszXHr7GmDOnTZv2dsAhqSyMMWLb9oJkMjnJGPPXPJqoMsZc1NHR4cTj8ckFD1Ap\npcqQJoAD6O7uvgHwO9tQgNsCDEflYO3atTWp7d5Cg9U1xvwmHA4vGoaw1ACmTJnyfH19/Qy8YRf5\njMM8zBiz3HGcyxzHqS5weEopVVY0ARzAnDlznhORLwDvDFLVFZHzIpHIkuGISw2uo6PjfODDPqq+\nEwqFdPb2CJHqDfwBcDiQz/upGm8W9/L29vZJBQ1OKaXKiCaAg2hpaXmoqqrqUGPMlUAc2AAkgU3A\nP4CY67p2S0vLzcWMU70vkUh8CLjYZ/ULjjjiiJeDjEflzrbtZ8Ph8FHGmLPx3wufbrLruiscx7lk\n8eLFOtZZKaUy6AejD6eddtorwLzUHzWCiYiVSCQWAqN8VH8sHA77miGshp8xxgVujcfjfwDuMcYc\nmWMTNcAVY8eOPSkej5/a0NDwZOGjVEqp0qQ9gAXU1tY2rdgxVDrHceYAH/FRdYuINBljJOiY1NA0\nNDT88/nnn/+oMeb7wJZcjzfG2MYYx3GcC7Q3UCmlPJoAFpCI/LLYMVSyFStW7GuMudpPXRG5sqGh\n4Z9Bx6QKY+bMmclwOHyDZVlhYHkeTYwCrhk3btwSx3EOKXB4SilVcvTb8ABisZj2DpUQy7IW4G8d\nudXGmOuDjkcVXn19/T8WL148ffvtt/++iFyKv1v96aYAKx3HmRcOh29O3WZWSqmKoz2AqizE4/Gv\nASf4qJq0LOs027a7go5JBWPGjBnd4XD4ahGxgfY8mhgN3OA4zpKVK1dOLHB4SilVEjQBVCVv+fLl\nOxtjbvVZ/db6+non0IDUsGhoaHhy48aNU4D5QM47gBhjjkwmk6sSicRZjBqjn4VKqYqiH3qFswXQ\nMWVFEAqFbgZ281H1uerq6vlBx6OGz4wZM7pt277csqxGYFUeTdSKyC1PH3f73YWOTSmlRjIdAziw\nlyORyD6DVWptbf2MZVnnNzc3Tx+OoNT7EonEp0TkWz6qioi0TJo0aXPgQalhV19fv2rt2rWNHR0d\nFwMXkeNnm1tdGw4mMqWUGpm0B3AAInKsn3qu6y4RkY/EYrEZQcek3rd27dqxItLqs/qPGxoa/hRo\nQKqo6urqOm3bno830UPX/FNKqQFoAjiAlpaWf/ipFwqFXAAROS3YiFS699577wrgAB9V3+js7Dwn\n4HDUCGHbdvv48eNtEbka6B5SY8YyhYlKKaVGFr0FPEQLFizYW0SuM8ZgjPl4seOpFI7jTAHO8FPX\nGHPGtGnT3g44JDWCTJw4cStwcTwe/7Ux5h7g0HzaeblhztVO0ymHAS8WNEDl21tvvTXquOOOK3YY\nSpUdTQAHkMc6gLsGEojqw3GcamAhEBqsrjHmN+FweFHwUamRqKGhYcXixYvDY8eOvdwYcw4+rpks\nvlbouJR/o0ePLnYISpUlTQAL6z/FDqBCnA8c5qPeu11dXXODDkaNbDNmzNgCfL+9vf0B13XvAT44\n1DbPOusDLFkyfujBKQBuvfVfTJ/+Tk7H7Lrrrju9+eabAUWkVPnTMYAFZIxZWOwYyl0ikfgQcInP\n6hdMnTr1pSDjUaWjvr7+8c7OzsnGmFsA3QGkxE2fPv3z8Xj8mGLHoVSp0gRw6Lrw1v8775VXXrmu\n2MGUMxGxRGQh/rb/WhIOh/3OEFYVYtq0aR3hcPgc4Cjg2WLHo/IXCoVqjDG/j8fj3yl2LEqVIr0F\nPLBXI5HIXsUOQnkSiUQL8BEfVbcCTcYY3ctZZWXb9hLHcQ4HrgVOB3S2b2mqNsbcHY/HD7Jt+xJ9\nzyvln/YADsB13ZOLHYPyLFu2bB+8X9Z+XGnb9tNBxqNKn23b79m2fabrujMs6X652PGo/BljLkok\nEvetW7fOz90BpRTaAzig2bNnP1rsGJSnqqpqATDOR9XVgN6KV741Njb+9b0LJ34RWOb3mIMPfo/O\nTu00LJQddhjaco0pX3vnnXf2Xbp06Um67JNSg9MEcACxWOyJSCRyxGD17rzzzgmhUOhZ4PuRSOSG\nYQitoiQSia+IyIk+qiZd153V2NjYFXhQqqzU/nfde7nUnzPnlaBCUUMzvaamZlkikfh0OBz+V7GD\nUWok0wRwYJP8VNpll11eWr9+PcDnAU0AC2j58uU7i8htfuoaY25rbGyMBx2TqhzjXnH+97UjTvlV\nsePIx7nnnnv8F7/4xfi0adPeKnYsQ9Hd3X0WMC2HQyaKyOPxePxzDQ0Nfw8qLqVKnSaAQ3TPPfeM\n3rBhQ88stLqiBlOGQqHQzcBuPqo+X1VVNS/oeFRl2f6lZWts276/2HHkYU/gh3/961/HAF8pdjBD\n9DCwIcdjdjHG/DmRSJwSDod/EURQSpU6TQAzZO7+MdhuIJ2dnekPa4OIqVI5jnMs8C2f1VsmTZq0\nOch4lCoh1wBjgZnA7cBjxQ2nKEaLyM8cx5lg2/Y1xQ5GqZFGZwEX1nPFDqBcrFq1agzgdx2/H9u2\n/XCQ8ShVQhqBb6c9/h8q97PeAFc7jrNw8eLF2uGhVJpK/VDYJhE5mfwXiL27kLFUsu7u7iuAA31U\nfaOzs/PsoONRqkQYvIQv3WSg0hdLnjVu3LgHly1btn2xA1FqpNAEMENLS8vPgA8BZ+B/u6hXReTy\nV1999abgIqscK1asaBCRM/3UNcacqUs+KNXrG8DULOVXA2WV/Lz++utP5XjIsVVVVUscx9kvkICU\nKjHaJZ5FJBLpAm6PxWJnRiKRg4sdTyVxHKcaryc15KP673SAt1K9xuKN/ctmV+BS4LzhCydYjz32\n2KPAT4Cr8L+Ty2HA44lE4rPhcDgRVGxKlQLtARzYz4sdQAU6H+9DejAbu7u7ZwcdjFIl5AJg7wGe\nPxMoqy+0tm1fY4z5GrAlh8P2EpFHE4nEZ4KKS6lSoAngACKRyKW51I/FYrp13BA4jnMIcInP6hdM\nnTr1pSDjUaqEHAicO0idauDmYYhlWIXD4V+IyDFALusdjhWRB+Lx+OlBxaXUSKcJYGHdUuwASpWI\nGGAh4Gcvz7+Hw2G/M4SVqgQ3AKN91DsBOC7gWIZdQ0PD340xRwLrcjgsZIz5QTwev2XRokV+hpwo\nVVZ0DCDQ1tb2eRFpBVwRaWlpafk1DL4GoCqcRCLRAkz3UXUrMMsY43eCjlLlbgbwxRzq3wL8BSir\nLRPD4fC/li5dOrWmpubX+PssAcAYc9aECRP2X7Vq1Td1LVFVSbQHEBCRBXi7TexhjIkVO55Ks2zZ\nsn2Aa31Wv9K27aeDjEepEhICbs3xmEOAuQHEUnTTpk17e/z48ccAP8vx0M93dXU9smLFij2CiEup\nkUgTQFV0oVDoTvwtUbEGuC7gcJQqJc3A4XkcNx9vZnDZmThx4tZwOPx1Ebk6x0MbLct6fMWKFbql\np6oImgACxpjZwBvAayISKXY8lSSRSHzFGONnNl4SaLJtu6xuWyk1BDsAVxTh2BHPGCMNDQ0Xi8hp\n5Har+wDLspa0t7d/IqjYlBopdAwg0Nzc/ADwQJanXo1EInv5bScWi71WuKjK39KlS3cSkdv81BWR\nHzQ0NCwPOialSshlwM5DOH4W3naLTxQmnJGnoaHhh/F4/EVjzC+B8T4P28F13T8kEonmcDh8b4Dh\nKVVU2gM4sFNyqWyM8bV7hfLU1NTcjDf2cjAvbLfddvOCjkepEvIhYM4Q2whRASsXNDQ0/Nl13Y8A\nL+ZwWLWI3OM4zuWpFQqUKjuaAA4gEok8nEt9EdEeVZ/i8fgngW/5rB6pq6vbFGQ8SpWYWynMHZyj\ngS8XoJ0RrbGxca3rulNExMnx0HmJROIn69at87M8lVIlRRPAwir7b9OFsGrVqjHGmFb8bd/0Y9u2\nc0rElSpznwGOLWB71+NvDcGS1tjY+FpNTc3RwK9zPPTrGzZseHjp0qU7BRCWUkVT8T1Wutbf8Ovq\n6rocmOCj6hvJZPKcoONRqoSMAm4qcJsHAN+jjCeF9Jg0adLmRYsWfXHChAk3422N54sx5mM1NTWP\nO47zadu2nw0wRKWGjfYAqmG1YsWKBuC7fuqKyFlTpkz5b8AhKVVKzgAmBtDufAbeR7hszJw5M2nb\n9nfxPoeSORx6MLCsvb39yGAiU2p4aQKoho3jONWWZd2FN/h8MA82NDTkupirUuVsDyCoyVAhKmyN\nTdu2bxORLwC57P6xi+u6jziOU/bjJlX50wRQDRsR+T7+Fq3d6Lru7KDjUarEXIm/BdPzdTIwNcD2\nR5yGhobfGGOOAnJZwms08It4PP79gMJSalhU/BhAclzrbyCxWOz1QrRTjuLx+AeNMZf4qWuMubCx\nsfE/QcekVAnZHm9B47bBq37rZBg9tm/ZUyvgMT/r/U0GluUeXukKh8MJx3GmAA8CH/Z5mDHGXBeP\nxw/atGnT3BkzZnQHGKJSgdAEMMe1/gZxdgHbKhsiYhKJxEL8zTT8e319/YKgY1KqxLwL+OwV/9Fx\nQEYCyANg/O63XXFs237RcZzpxphfisgxfo8zxjSPGzdu/yVLlnx5+vTpG4OMUalCq/hbwLmu9TdI\nW/9bqLbKSSKRiAAf9VF1qzGmyRjjBh2TUkqls237HRH5tDHmhzke+qnRo0f/fdmyZfsEEphSAdEe\nQB/a2tqOEZFTgUZgT7ylGDYAa4EHk8nkXXPmzFlfzBhHqtSHot/B5VeFw+GngoxHKaW2JbXX+GmJ\nROJZEbkSf2uVAhxWVVW1PB6Pn9jQ0LAywBCVKpiK7wEcTGtr6x0i8ie8AdIfAMbgJc67AEcB14dC\nobULFy6sqMHTflVXV9+Bv4HrT9bW1lbULESl1MgUDoevFpGTga05HLaXMeZvjuOcEFRcShWSJoAD\naGtr+6oxxs9+m3u6rvvgggUL/OxrWzESicRMEfmsj6pJY0xTXV1dZ+BBKaWUDw0NDT8HjgFyWYt0\nLPBrx3GGuk+zUoHTBHAArus25VB9J8uyzg0smBKzdOnSnUTkNp/Vbw+HwxU181ApNfLZtr0kFAod\nCazL4bAQcIfjODeJiP6OVSOWXpwDMMYcgbf0wgIRORbYa8cddxzV3Nxsbd68eTvXdQ80xnwGuAdv\nRXnt+k+prq6+EdjdR9UXamtrfS0Po5RSw23y5MnrgGnA33M89JxEIvHLpUuX1gYQllJDppNABraD\nMeZrzc3Ni7I81wG8kPrzu7a2tr+ISOtwBjdSxePxY4wxp/ipa4xpqaur2xRwSEoplTfbtt9avHjx\nMWPHjr3XGPOVHA79fE1NzaPLli377NSpU3WdWDWiaA/gwN4RkQf8VNyyZcsvgYr/prdq1aoxxpgY\nPmbPGWN+Eg6H/zgMYSml1JDMmDFji23bXwOuyfHQxqqqqsfb29sPDSIupfKlCeDA4pZl7eSn4qhR\no0YDb2Z7LhaLPVbQqEawrq6uy4AJPqq+KSLnBB2PUkoVijFGbNu+CGjCGx7k14Gu6y5JJBIfDyg0\npXKmCeAAjDFtrut+wk9dEZlojHl6G0/73V6opLW3t9vAWT6rn2Xb9ltBxqOUUkGwbfsu4ETgnRwO\n21FE/uA4zrcDCkupnOgYwAGIyLXAB2Kx2H0+62+NxWKb8bY8q6jk2nGcatd178KbATeY39u2rbum\nKKVKlm3bDzuO81Hgd8B+Pg+rAe5xHGdCOByOGmMkuAiVGlhFJSl5+ECO9UcB21GZ/6/nAZN81Nvo\num5L0MEopVTQbNteA0wFEjkcZoBLHcf58dq1a2uCiUypwVVioqIKbPny5QcDl/qpKyIXNTY2/ifg\nkJRSaljYtv1qbW3t0SLy21yOM8Z8Y8uWLQ8vXbrU1zhzpQpNE0A1JCJiQqHQXXi3vQdkjFlq2/ad\nwxCWUkoNm7q6uk3PP//8540xt+dynIgcVVNT83fHcQ4KKjaltkXHAA7s9UgkssdQG4nFYmW7/lMi\nkYgAH/VRdasxpskY4wYdk1JKDbeZM2cmgTMSicSzInIj/sZDAxwCLE0kEifpjkhqOGkP4ABE5OwC\nNVWodkaUJ554Ym/gWj91jTHX1NfX/yPgkJRSqqjC4fCtwJeAzTkctpuIPBKPx78UUFhK9aMJ4ABa\nWlp+lkv9BQsWHJ2tPBKJlOWM1+7u7juA8T6qrh09enSui6cqpVRJsm37V67rzgBey+GwWmPMLxKJ\nxPeCikupdJoAFpBlWWWZ6GXjOM6XgZN8VE0aY2bV1dV1Bh2TUkqNFI2NjXHLsqYCa3M4zBKR6x3H\nWbB48WIdoqUCpRfYAKLRqLXXXnudLyLfAfYHqosd00iwevXqHTs7O2/zWf0OHdeilKpE9fX1/165\ncuX07u7uXxpjfG0qkNKy/fbb779kyZKvTJ8+fWNgAaqKpj2AA9hrr70uEZGr8dYD1OQvZevWrTcB\nfibH/Lu2tvbioONRSqmRavLkyRuMMccD9+ZynIgcP3r06MeWLVu2TzCRqUqnCeAAUj1/Kk08Hj/G\nGHOKn7rGmJa6urpNAYeklFIjmm3bXbZtnwrMA3LZ/WNSVVXVshUrVhwRUGiqgmkCOLC9ix3ASOI4\nznbGmFa8lewHc184HH4o6JiUKl1iQD4GcjnI70D+BfImSGfqz0aQV0BWgvwG5HqQb4IcXOzIVX5s\n274S+AawNYfD9rYs62/xePz4gMJSFUrHAA7sDWAv4Cfd3d0Xz5kz56WB9m6MxWLlvsPFZYCfBUvf\nAs4KOBalSpRYwGy87RMPGKBiNTAW2BM4AvhMqvxVvM8lVYJs2/7fRCLxHxH5FeB3F5BxxpjfOo5z\num3brUHGpyqH9gAOQEQWA1RVVc2dO3fufwbbuDsUCs0YnsiGXyKRCON/PcPv2rb9VpDxKFWaZA9g\nOXA77yd/jwCnAgfjLatUA+yGt8fsuUA8o5E1wxGpCk44HH4smUweCTybw2EhYIHjODeIiP7uVkOm\nF9EALMu6F2Dr1q2+ekq7urrKcrDu4sWLq0TkLvytbP9727YrZjkcpfyT3YBHATtV8C5wEphPgLkX\nzDow74LpAvMmmOVgbgbTCHw2rSFNAMvAlClTngGmisjjOR56Xnt7+6KlS5fWBhGXqhyaAA6gubn5\nz8aYFZZl+erZK9d1AMeNG3ce3i2owWzCu7WllOrvVuCDqX+7wJfA/Mbfoea3qWMAVhc8MlUUtm2/\ntWnTpo8D9+dynIh8saamZvGqVat2Cyg0VQF0DOAARMQsXLhwuTHmR7FY7OdU4FIwy5cvPxiY77P6\nRf6yo/EAACAASURBVLZtvxhkPEqVJgkDX0sr+CWYP+XYyFagFu0BLCszZszYIiJfSSQSzwHn53Do\nlK6urmWO43zatu2ng4pPlS/tARxAW1vb90TkDLyB2BWX/ImIsSxrITDaR93Hw+HwHcMQllKlaGbG\n4x/n0cZWoBvQPbXLjDFGbNu+wBjTjPcz9utAYOmKFSuOCig0VcY0ARxYU7EDKKb29vYmY8zHfFTt\nFJEmY4w7eFWlKlLmLhBOHm1sBdaByWUJEVVCwuHwQuAEIJfdP3a0LOvheDz+zYDCUmVKE8CB7V/s\nAIqlvb19LxG53k9dY8zVjY2Nuex3qVSlyVxT9O3cmzB7gDm0INGoEcu27YeBjwAv5XBYjTHmR4lE\nYr6I+FmnVSkdAziIt4HdqcB1AF3XvQNvSYrBrB09evQ1QcejVInbOePxrsArxQhEjXy2ba9pb2+f\n4rru74DJPg8zIhJNJBIT1q5d21RXV9cZZIyq9GkP4MAqch3AeDz+ReBzPqq6lmXpB41Sg8u8pefn\n/aUqWH19/Su1tbUfAx7M8dBvdXR0/HH16tU7BhGXKh+aAA4gNQECy7L8rH9Hd3d3TbARBW/16tU7\nGmNu91n9jvr6+lzXsFKqEv0743EURLeaVAOqq6vb9Nxzz50kIrlOsDu6s7Nz6fLlyw8MJDBVFjQB\nHEBTU9MjwJKurq5j/dQ3xjwccEiB6+rquhHYw0fVF2tray8KOh6lykTmZ8OuwF9AKnacsfJn5syZ\nyYaGhtNF5BzeXwvSj0NCodCyeDzeGFRsqrTpGMABxGKxp4ADROQXsVjsF8WOJ2iJROLjInKqn7oi\nMruurm5T0DEpVSbagHPou5zUB4GVIKeDKctF5FXhNDQ03JJIJF4QkZ8C2/k8bDdjzKOJROIb4XD4\n/wUZnyo92gM4sEPwsQZeOVi6dGmtiLQBfmaQ3dfQ0PD7oGNSqnyY54AbszyxI3AfyOLUYtFKbVM4\nHH5ARGYAr+dwWK2I3O84zrlBxaVKkyaACoDq6urLgIN8VH0LOCvgcJQqR/OAbX1xOhqIg/xExwaq\ngTQ0NKxIJpNHktuC4BZwo+M4dy5atMjXmHZV/jQBVDiOU2+MOdtPXWPMWbZtvxV0TEqVH5MEPs+2\ndwExwDeAf4J8D0R/UauspkyZ8nxNTc104JEcD5190EEH/Xbt2rVjg4hLlRYdAziwVyKRiO9v47FY\nrOTW9Vq8eHEVcDc+rgUReci27fuCj0qpcmU6gW+D/Bm4hf7rAwKMAa4HZoJ8FcyzwxmhKg2HH374\n+rVr1x7f0dERA07xe5yIHN/R0fFYe3v7CfX19SX3O0sVjvYADsAY8+Uc638pqFiCMm7cuPOAI3xU\n3RQKhVqCjkepymB+gjfGuBVIbqOSDTggU4YtLFVS6urqOsPh8HeAS4EB16nNcITrussTicThAYWm\nSoAmgANobm5emkv91OyskrFy5cqJwHyf1S+ur6/PXMtMKZU38xaY2cDhbHux3x2AP4J8YPjiUqXE\nGCO2bV9hjPkW3n7Rfu0jIksSicRxQcWmRjZNAIcoFotVt7W1fTUWiy0DSmbRTRExyWSyDR+znEXk\n8eeeey7XhUiVUr6Yf4A5Efgk8EyWCuPxZgrrHq9qm8Lh8E9d1/0Uue0zPU7+f3v3Hx9XVed//HXy\noz9pA8gWCgt8oVSEQkszMyWGsFIB3VUQ5EdUXFiwpamg/KjAgqJWQZAfX+XLz05AZNEFKSjrLiyi\nQGCBAp2ZFIqFopQWQQsiRSiYH03mfP+4N9vpZJKcm8nNzcy8n4/HPJK593PufKZNTj5z77nnWPtf\nqVSqJay8ZOxSAThMyWRyp2Qy+XVgvbX2TqCkLtO0t7cvxLvzcCjd1trTm5ubB7pMJSIjwjwEzAFu\nKbBzHnDM6OYjpWbevHmPAYcAQcaN1hhjlqVSqSut1YeMSqICMKCbb755dmtr6y3Aa8D3gJKbsqG9\nvX1Xa+2VLrHW2svnzZu3JuycRATAdII5HbiqwM7Pj3Y2Unri8fja2traRmttoGU6jTHnZzKZ5StW\nrJgYVm4ytuguYAdLly6t2mWXXY42xpydzWbnR51PsbLZ7PV4Y4uG8sL2229/edj5iEg/FwINwKE5\n2xoiykVKzJw5c/68YsWKw8eNG3c7EOTmxBNqa2t3a29vP6a+vv6tsPKTsUFnAAeRTCbrksnkudOn\nT3/ZGPMfwEDF32qgBfjb6GU3PKlU6ni8uciGks1ms6fPnDkzyKBiERkRJos3FUyunaPIREpTY2Nj\nRywWa7bWFjqbPCBjzEez2exTqVRq37Byk7FBZwALWLZs2cyqqqqv+uviDjRhZg9wr7X2+sWLF/8P\nQDKZdJpMOSqrV6/eobu7+zqXWGPMjfPmzQt0F7SIjKin855viSQLKVnGGAtckEql1hljrsf9b/4M\nY8yKlStXHuePK5QypAIwx7Jly440xpwNfGqIwbCX1NTULFuwYME2k2haa8d0Adjd3X0lMN0h9LWO\njo6vh52PSHmzK4B6MMNdT3xz3nOtwCPDkkgkkqlU6g/GmLuAKY7Ndqyqqnowk8ksjMViJTXFmbhR\nAQgkk8kW4Cxg/0HCHjbG3GCt/UVLS8u3CgUsXrz4V6EkOALS6fR8YIFLrLV2cVNTU/4fHxEJ5gCK\nG2azY97zDUUcSypcIpF4oL29/dBsNnsf8PeOzcZba29Pp9N7xWKxS/0zilImNAbQs4zCxd+7wLW9\nvb0faWlpOWLRokX3jnJeI8K/q6sVb63RodyRSCQGWrBeRJzYPfHOtBQzrcacvOdtRRxLhPr6+udq\namoagGcDNDPAdzOZzK1r1qwZF1JqEgGdASzsOeDGiRMn/vspp5zyQdTJFGv8+PFLrXVaSeAvVVVV\n54SekEj5O8D/WsyH7H/Ke35fEccSAeCggw7645o1aw7t7Oxcbq3N/xkbzKkdHR17rF69+oTZs2e/\nE1qCMmp0BnBbWWPMtzdu3Fjf0tLSWg7FXzqdrrfWLnGJtdYu0a3/IiOiyALQ7sy2QzYeALOqyJxE\nAJg1a9b769atOxq4KWDTj3d3dz/+zDPPlMyqVzIwFYCAMeY4a+19QNZa+53p06evTyaTl7a2tn44\n6tyK0dbWVoO3qoDLmd4HE4nET0JOSaRSHLD1W3tBsKa2FrgTmOxv6MCbF1BkxDQ3N/fG4/EzgPOA\nbICms6qrq1ekUql5IaUmo0QFILBo0aJ7Fy9efHRPT8/u1toL8Trcb1hrX1q2bNlTy5YtW3zjjTfu\nEHWeQU2ZMuVrwFyH0Perq6sXh52PSAXJKQC5AuwNYOuGbmb3AB5h65yjFjgZzOoRz1AEiMfj/9da\n24z3d8/VLsaYtkwm4zKnrIxRKgBznHnmmW8sXrz4ipaWlo8YYw4xxvzIGDPLGHNTdXX1xtbW1rsB\nli5dWvCMWjKZPHF0Mx5YJpPZB/i2Y/jFc+fO3RBiOiKVZnze8zOA9WD/H9gjvUu8tgbsFLB7gT0R\n7G3A74Emv81bwFFgfj6KeUsFSiQSP8f70PHnAM0mWWvvSaVSY3r6MxmYCsABLFq0aMWiRYsWTpw4\ncbox5jTgGWvt8QDTp0//UzKZvL61tbUxr9l3Rz/T/qy1xlrbCris6fj0K6+8cn3YOYlUmIOAc4GX\ncrbtgDfd1K+BN/Amdn4PeAVYDvwLMM7fdg1wIBjdkS+jIh6PP9Pb29sArA3QrMoY84NUKnX98uXL\nq8PKTcKhu4CH4N8IchtwWzKZnAF8CTgFONNae2Yymdxgrb3TWnsHsFuEqf6vTCazgIGXrcvVba09\nvbm5uTfsnEQqi+nGK+KuATsXOAKvKDwA2AmYivcBbTPwDl5BuBJYgXfDh+bhlFF38MEHr1+9enVj\nd3f3L4DDXNsZY87ce++991yzZs0XZs2a9X54GcpI0hnAAFpaWta1tLR8Y+PGjXsaYz4F3A1MN8Zc\nVFVV9TzuM6yHpr29fVfAde3HKxKJxG/DzEdEzCowV4H5Ipg5YHYDMwVMDZgdwOwNphHMOWCWq/iT\nKM2ePfudiRMnfhK4PWDTozo6Oh7z/wZJCVABOAxLly7NLlq06IGWlpbm6urqXYGzCTaxZmh6e3uv\nA7Z3CH2xrq7ue2HnIyIipWXWrFndsVjsVGPMUrwbkVzVZ7PZp9Pp9IEhpSYjSAVgkRYuXLippaXl\n2paWlrnA+ihzyWQyxxljjnMIzVprT585c2ZX6EmJiEjJMcbYWCz2HWvtqUB3gKa7A0+m0+lPhJOZ\njBQVgCOopaVl76hee9WqVdtba69zibXW3pRIJJ4MOycRESltiUTidmvtJ/HGqrqaAtyfyWRODykt\nGQEqAMtEb2/vlYDL2IvXurq6Lgo7HxERKQ+JROJRoJFgV7lqrLWt6XT6+9baYtbElpCoACwDqVTq\nMGChY/iXm5qaNMhcREScxePxtbW1tQ3AMwGb/msmk/lZW1vbhDDykuFTAVjiVqxYMdEYczPg8gnr\nzng8fn/YOYmISPmZM2fOn7u7u+cbE3hy8uapU6c+nE6ndwolMRkWFYAlbty4cd8G9nEIfbu2tvac\nsPMREZHy1djY2FFfX98MXB2knbW2EXh61apVM8PJTIJSAVjCUqnUXOBrLrHW2iVz5swJssyPiIhI\nP8aYbDwePx9vicMgCwnM6O3tfTqTyRwaUmoSgArAEtXW1lZjjLkFt9Vcfp1IJIJO6ikiIjKgeDx+\nk7X2aCDI6h87Wmt/k06nTworL3GjArBETZ069Vyg3iH0/erq6paw8xERkcqTSCQeyGazhwJ/DNBs\nPPDTdDp9cUhpiQMVgCUonU7PsNZ+xyXWGPPNuXPnbgg5JRERqVDz5s17tqenpwF4LkAzA1ySSqVu\nTafTtSGlJoNQAVhi/PmUbsZbSH4oz6xbt85pcmgREZHhamhoeL2zs/NQY8wDQdoZY06z1j6QTqfr\nwspNClMBWGIymcwCYL5D6Bbg9Obm5iADdEVERIalqalp83vvvfcZY0wySDtjzOHAk+3t7XuGlJoU\noAKwhKTT6enAlY7hV8Tj8efDzEdERCTX/Pnze2Kx2GJjzAWADdB0VjabfXrlypWJsHKTbakALCHG\nmOuAHRxC19bV1V0adj4iIiKFxGKxq6y1zUBHgGa7VFVVtaXT6WPDyku2UgFYItLp9LHW2uMdQrPW\n2oUzZ87sCj0pERGRASQSiXuqqqoOB4LMQTsZuCeTyWjhgpCpACwB/uDYGxzDlyUSiSfDzEdERMRF\nfX39U0AjsDZAs2pr7Q/T6fS1y5cvrw4ptYqnArA0XAXs6hD3emdn54VhJyMiIuIqHo+v6+7uPsQY\n81jApl/da6+97n3uuecmh5JYhVMBOMalUqnDgIUuscaYLzc1NW0ONyMREZFgGhsbN02YMOET1tqf\nBmlnjDl6y5Ytj/k3QcoIUgE4hrW1tU0wxrTiTZg5KGvtXbFY7L5RSEtERCSwWbNmdcfj8VOASwh2\nh3AMeDqdTh8YTmaVSQXgGDZlypRvAzMdQjeNGzfurLDzERERKYYxxsbj8W8ZY74EdAdougfweDqd\n/kRIqVUcFYBj1MqVKw8CznOJtdaeO2fOnCB3WYmIiEQmFovdZoz5J+CdAM3qgPtSqdSCkNKqKCoA\nx6Dly5dXV1VV3QLUOIT/OpFI3B52TiIiIiMpFos9UlVV1QSsD9Cs1hhzSzqdvsxfGlWGSQXgGDRj\nxowleGMehvJBb2/v4rDzERERCUN9ff0LPT09HwVWBmx6UXt7+x1tbW0TwsirEqgAHGPS6fQMa+13\nXGKttd88+OCDg3xyEhERGVMaGhre7O7uPgy4N0g7a+3np0yZ8pt0Or1TOJmVNxWAY4h/OrsVmDhU\nrDEmtX79+mvDz0pERCRcjY2NHbFY7ARjzA8DNm0CVqxatcrlhskw7BHR6xZNBeAYkk6nTwM+7hC6\nBVjY3NzcG3JKIiIio8IYk43FYkuMMV8Bgvx9m9nb2/tUOp1uCiu3QaSBK4DtInjtoqgAHCNqampq\njDFXO4ZfEYvFVoeakIiISARisdgNwDHA+wGafQh4qHpi9aRwshrQeOACYDPwJUqoriqZRMvdtGnT\ndgV2cAhdW1dXd2nY+YiIiEQlHo/fb639B+BPAZqNH1c3brTHA07N+f5HwDNAwyjnMCwqAMeISZMm\n1TmEWeD0mTNndoWdj4iISJQSicSqnp6eg4Hno85lEO/mPY8DK4A7GOPjA1UAlpZl8Xj8iaiTEBER\nGQ0NDQ2vd3Z2HgI8GHUuARjgC8Aa4Bs43NgZBRWApeP1np6eC6NOQkREZDQ1NTVt3rx581HAzcNp\nb2pN7Qin5Go74FJgLXBiRDkMSAVgibDWntnQ0PBe1HmIiIiMtvnz5/fE4/FFwIV4w6GcTd598j6Z\nTGa/cDJzsgewHGgD5kaYxzZUAJYAa+1diUTiP6POQ0RKwlF445ByH7dFmZDISInH41cAnwM6XdvY\nXttjrQ1yM0lYDsObNiYJRD55tctaszIKXn75ZS677LJ+23t6eroefvjhbrwfGCllHezYbyTIX9gH\n/d9G7oj72fGhT/ffnnyRzwJ7jXpCRSm75VHHDbD9Y+h3pyLF43F23XXXB2Ox2Cdra2u3WQpuv/f2\no5Ztr/hufG1jZzwevzKkdIKO76sCFgHNeJeHrwO6RzopF2XXU5SQ+4ACf3KkbJ0L5N/r/Qfg1ghy\nkW0cuCOsPqH/9otWwvefHf18RGR4zuVc6vI62jd5k5u4KaKMhvQu8HngV6P9wroEHB2N5xMREals\ndcADwJ1A9Wi+sArA6HwVWBV1EiIiIhKpVryaYFSXd9UYwP62A/4RmA8cCMzAq9DHAZuAvwAvAw/h\nzUv0+2G+ztvAkXiXgvctLmUpCYY68j90VdGDt4SQRKjaUM22M/oDUFNFBwEGm0soDLB9ge1dwN9G\nORcZw8aPHz+xakvVBLLbbjeYXsK76rY9wx9O9yiwhIhOBqkA3Gpf4Hzgi8CEAWJ29h+z8NYpBPgl\n8E2GN1P528BHh9FOStFUXiV/Zvi/52ng0Ejykf+16ngOBPqtr31JnO9e2s73I0hJtqoD/lpg+63A\nGaOci4xhXV1d1I2vezPblZ2Wu30a014AZof0sn+l/+juofwBOA+4e+TTcadLwDAJuBpvxu4FDFz8\nDeQY4Fng7CLz6Hf2QURERNxlu7Jj+Yz9+8DFwEeIuPgDFYAz8Obk+RrFDb6sAq4Brhpm+x2Ax/CK\nURERESkfFu8mj/2B7wEd0abjqeQCMAasBEZydvDz8G7nDuqHwEHA0hHMRURERKKVAhqBk4DXIs5l\nG5U6BnAW3g0cO4Zw7CTwOPBHx/j9gZP9788CrscbHyDlpoqjyJ/U1vB+NMnINibzMpuJ99s+zvn3\nWMLzPtAA3AXs6W9bCvw4qoRk7Kqiql8/myUbxRm3jXiXe2+D/NtSBrUz3njkvnGMFm+MoW4WHAF1\nwDq8f9SwHlcEyOdBvB8O639dXsybExEpQ2eztX/tBd4EpkSakYgn/+9/F/B9vBlFgjJ4E0LnHu+l\nkUlTAO7BrYhbh3dmbhowHqjHK9Zc2m7CbTzfZwZor7tCRUQ8f4e3WkLfB+W+x+VRJiXi62Hrz+Qv\ngH2KONYS+tcDdxaboHiOx62Ae4rCd+WOwzs163KMoZZ5G483n2BvXrtevLuKR3VGcBGRMeom+vev\nWbwzLXtHmJcIeNPArAEOL/I4c/F+pvN/1i8o8riCt2Dza7idvZs+yHEWOhzD4i3yPJjzh2i/MOD7\nExEpNwfR/0NybhF4b3SpiQBwKsXfTzEZWEvhn/Mjijy2UPjUaqHH+UMcZz/H4zw0yDF2wRvQmX9J\nI/cs4F8oPPu9iEilaGPgfrLvUeyZF5EojMe7Ungz3phWl7ri7UgyLXETgDcY+h/3A4ae0Xs7h+NY\n4MVBjvEjx2NcHehdioiUjxMZuo/sxbv8VqkzWkjp2oBbHZD7eCqKREvdybj94/7U4VhVjsd6Y4D2\ncYb+RNv32II3Y7iISCWZALzKwJd/8x9nRpOmyLBMIXjxZ4Hbo0i21D2O2z/upxyONdHxWF0F2hrg\nSdw7tSxwX8D3KiJS6r6J+x/FXryx2x+KJFOR4nyagX+2/y3CvMrC7rh1Ih/gtg7wLo7H6y7Q9iTH\ntsMpTEVEysFuDK+f1B9LKUVfZ+Cf6fMizKss5E4gOtjjvx2PN9vxeO/mtZuEt8LHcDq2F4HaIG9a\nRKRE/TvD6yctcEAE+YoU42cM/PP8yTBfuBIGzrqePXvCMW4Px7j8Jb4mAV8qEDcNr8Prcyze2ch8\nk/HmGxIRKVdVwK0UXuatFdjL//5y4JECMZ0h5SUSltmD7PvtqGVRhmrwpltx+eT4McdjfsXxeBnH\n4+2R126ou5BFRCpR7iT8J0Wci8hIGM+2K4nkPjaF/eJVYb9AxObivh7fs45x+zrG/ckxTkRERCrP\nLAZe9ev5sF+83AvAgxzjNtB/zN5AXKdl+b1jnIiIiFSeSC//lnsB6DogeE0Ix9S1exERERnIYAWg\nzgAWaYZj3FrHuJ3wpoFx4XpJWURERCqPCsAQ7eYY97Jj3BzHuM3Ac46xIiIiUnkOHGSfLgEXyfVs\n3QbHuI86xj2BNzu9iIiISL5d8KaBK+Q13O9LGLZyLwBd7wB+3THOtQC83zFOREREKk+kl3+h/AtA\nl6XdAN5yiBkH/INDnAXudXxdERERqTyRTwBd7gVg1jHO5VTrobidUXwMzQEoIiIiAxtsRhGdARwB\nrkundTvEfM7xWEnHOBEREalMg80pHGRqumFTAeiZOMT+ScAJDsf5E/CLvG0/x7ss3EVlrL0sIhKU\n+kmpNHsPsu+V0Uig3H/RXgc+7BC3J/DCIPsXAjs4HOdy+p9NvAA4DngJb82/fO/jLXLex+VspIhI\nORmqnwS4B3jK/9516i6RsWrHQfZ1jloWZewyCi+ynP9oGeQYuwJvOxxjA97CzvmO9fffWeybEREp\nU+onpdL8lYHriXmjkUC5XwJ+2jHubArfMbw98B8MXqn3+Sre5Yt8fXf6aGk4EZHC1E9KpWkfZF8r\nEMObfWQGcDpwxGgkVU62w7vD1+Us4CNAAu8s3k7APwPrHdveNUgOd/sxx+KNNew7m/jLnBgDnAX8\nDtgCvAgc5e97yI9/LSf+LuAD938GEZExTf2kVJoTcasv+h5PFT6MDOYagv0jB32sA+oGef2X/LiZ\neJeTVwFfyYv5Md6UNafijUe0wKac/e/grSxS6z+fCjzp+P5FRMY69ZNSia7Grc5IA5+NKMeS9n/w\nPgWGUfy9zeBz+UzE65D+BuyPN05wcV7MCWw79qXRf/5STkza3zbDf/5F4BMO711EZKxTPymV7DDg\nZ8CrQAfe2e0/Ar8BvgXMiSyzMrGIkS/+NuFdMh5MPCf2Lf/7i/JiHvW3fwGvw3oDr7A8JCfmLj/m\ncGAP4Gbndy4iMrapnxSRULUycsXfi3iXKoZyGluv3Z/hf/9EXsxmf/u7ftzFwIfyYvruZv4y0IZ3\nVlNEpByonxSR0H2T4gq/HuAHwGTH1/uh324J3g0pXf4xcu8q7vRjBpuTcQFbLzl/y/G1RURKgfpJ\nERkVCeBBghV+HcAtwL4BX6vvzrQj8p6flBPziL/tNLxbvucDP8k7zmF+zDoKT1cjIlKq1E+KyKja\nHzgH+E+8VUDexFuF4wO8Jd0eB27AG3y83TBf4028Dmma//xc//lm4O/8bTPwOrdOvDEwrcDOecfZ\n3W/3mWHmISIyVqmfFBEZwDHAA1EnISIyhqmfFJGyMhlYC+wXdSIiImOU+kkRKQs1eJem6/CWovvX\naNMRERlz1E+KSNmZwdaxLurURET6Uz8pIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiXq\nH/GmTLDAqxHnIiJyL15/9IeoExmE+k0RKQufxuvI/ivqRESk4s3H64/G+hJu6jel7FRFnYCMujn+\n19WRZiEiArP8r2sizWJo6jel7KgArDyz/a/qyEQkaqVSAKrfFKlALUAP3un/fwaewFt+6Flgfz/m\nWqDXj5kHXAK8ydZxLQY4C/gdsAV4ETgq5zWagJR/3C4/zmXfUMcFOAJI+203AZv9PLVouogUq9i+\n77Gctji2AWgEHsLrzzqBF/z4A/z96jdFZESswvvlvxvYGa8otHjFYJ8X/W2X4n2qXQr8t7/vx0AW\nOBXY04/blNN2vb9tb+BA/3uXfUMddzFe53wtMAn4mB/TAVQ7v3sRkYEV0/e95e/fLmfbUG3OwPtQ\nfovf7hA/pguo8WPUb4pI0WrwPkW+w9ZL5hPwOoTunOc9wHvA9v62I4HvAif4sXf62xv95y/lvMYb\n/rYTCrz+QPuGOu5heJ3YQ3ifeGFrR9Y+2BsWEXFUTN83zX++Ied4Q7WZj1e8PcrW/vgoP+bZnOOo\n3xSRou2P98v/eM627dj2U2PMf76iQPtH/X1fAL6I1zG9jfeptc9FbC0o8y9FDLRvqOPe7+//eE6b\nc/xttw3wXkVEgiim7+u7A/j+AG0e8PcfntOmr4/8twLb1G+KyLB9Hu+X/8acbYf6237lPz/Vf95a\noH3f2JF3gaeAi4EP5cXUAT/z437nuG+o477t75+Ss+12f9uSAnmKiAR1KsPv+870918ZoM079O/X\n7vC3fS1nm/pNESna9/B++c/I2dbXIXzWf/4D//lZBdp3+vtqCuzD3zeBrZdDuh33DXXcbn//+Jxt\na/xtRwzQRkQkiGL6vhv9/f8SoE1fvzYhZ1tfv3ak/1z9pogDTQMztL7b/1/G6xSWACfjFYH35sX8\ntkD7vksjJwPj8C57/CQv5kjgw/73qxz3DXXc5/yvn8O7ceU6tt61rKkMRGQkFNP39fVHLwRo0zcO\nbwHeWb5rKNyvqd8UkaK9ijfo+AO8wcEb8MaX5N4N9ibeJ8RpBdrPAB7B++S5Ce9Syc45+3+JJ0v/\nWgAAALVJREFUdzmiC/gf4COO+4Y67lzgeb9tG3CQ/70F7hn6bYuIDKmYvu8t+l+iHarNHLxCbAve\nNC2fZus0XQ/6Meo3RaRodWj9RxERESkzugQ8uAP9ry9HmoWIiIjICFIBOLi+AvDFSLMQERERkVFx\nAvA3ts4w/9No0xERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER\nERERERERERERERGRiPx/4UAONQMQcb0AAAAASUVORK5CYII=\n",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ipd.Image(\"https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/ADSR_parameter.svg/640px-ADSR_parameter.svg.png\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another property used to characterize timbre is the existence of partials and their relative strengths. **Partials** are the dominant frequencies in a musical tone with the lowest partial being the **fundamental frequency**.\n",
"\n",
"The partials of a sound are visualized with a **spectrogram**. A spectrogram shows the intensity of frequency components over time."
]
},
{
......@@ -403,7 +502,6 @@
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 2",
"language": "python",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment